Внутренние и внешние источники энергии земли.

Источники энергии на Земле

Не все источники энергии равноценны. Одни представляют лишь принципиальный интерес, с другими связано существование цивилизации. Одни источники практически неисчерпаемы, другим придет конец в ближайшие столетия, а то и десятилетия.

Уже несколько миллиардов лет посылает свои живительные лучи на Землю главный опекун нашей планетной системы – Солнце. Этот источник энергии можно смело назвать неисчерпаемым. Каждый квадратный метр земной поверхности получает от Солнца энергию средней мощности около 1,5 кВт; за год это составит около 10 миллионов килокалорий энергии – такое количество тепла дают сотни килограммов угля. Сколько же тепла получает от Солнца весь земной шар? Подсчитав площадь Земли и учитывая неравномерное освещение солнечными лучами земной поверхности, получим около 10 14 кВт. Это в 100 тысяч раз больше энергии, которую получают от всех источников энергии на Земле все фабрики, заводы, электростанции, автомобильные и самолетные моторы, короче – в 100 тысяч раз больше мощности энергии, потребляемой всем населением земного шара (порядка миллиарда киловатт).

Однако, несмотря на множество проектов, солнечная энергия используется совершенно незначительно. И правда, подсчет наш дал огромную цифру, – но ведь это количество энергии попадает во все места земной поверхности: и на склоны недоступных гор, и на поверхность океанов, занимающую большую часть земной поверхности, и на пески безлюдных пустынь.

Кроме того, совсем не так уже велико количество энергии, приходящейся на небольшую площадь. А ведь вряд ли целесообразно создавать приемники энергии, простирающиеся на квадратные километры. Наконец, очевидно, что заниматься превращением солнечной энергии в тепло имеет смысл в тех местностях, в которых много солнечных дней.

Интерес к прямому использованию энергии Солнца несколько возрос в последнее время в связи с появившимися возможностями непосредственно превращать солнечную энергию в электрическую. Такая возможность, естественно, весьма привлекательна. Однако до сих пор она реализована в очень незначительной степени.

Сравнительно недавно был обнаружен аккумулятор солнечной энергии у нас над головами – в верхних слоях атмосферы. Оказалось, что кислород на высоте 150–200 км над земной поверхностью вследствие действия солнечного излучения находится в диссоциированном состоянии: его молекулы разбиты на атомы. При объединении этих атомов в молекулы кислорода могло бы выделиться 118 ккал/моль энергии. Каков же общий запас этой энергии? В слое толщиной 50 км на указанной высоте запасено 10 13 ккал – столько, сколько освобождается при полном сгорании нескольких миллионов тонн угля. В СССР такое количество угля добывается за несколько дней. Хотя энергия диссоциированного на больших высотах кислорода непрерывно возобновляется, здесь мы опять сталкиваемся с проблемой малой концентрации: устройство для практического использования этой энергии не так-то легко придумать.

Вернемся к обсуждению источников энергии. Воздушные массы земной атмосферы находятся в непрерывном движении. Циклоны, бури, постоянно дующие пассатные ветры, легкие бризы – многообразно проявление энергии потоков воздуха. Энергию ветра использовали для движения парусных судов и в ветряных мельницах еще в древние века. Полная среднегодовая мощность воздушных потоков для всей Земли равна не много не мало 100 млрд. кВт.

Однако не будем возлагать больших надежд на ветер как источник энергии. Мало того, что источник этот неверен – к скольким несчастьям и разочарованиям приводили ветряные штили в век парусных судов, – он обладает тем же недостатком, что и солнечная энергия: количество энергии, выделяющееся на единицу площади, относительно невелико; лопасти ветряной турбины, если создать такую для производства энергии в заводских масштабах, должны были бы достигнуть практически неосуществимых размеров. Не менее существенным недостатком является непостоянство силы ветра. Поэтому энергия ветра, или, как его поэтично называют, голубого угля, используется лишь в маленьких двигателях – «ветряках». Во время ветра они дают электроэнергию сельскохозяйственным машинам, освещают дома. Если образуется излишек энергии, он запасается в аккумуляторах (так называются хранители электроэнергии). Эти излишки можно использовать в затишье. Конечно, полагаться на ветряк нельзя – он может играть лишь роль вспомогательного двигателя.

Даровым источником энергии является также движущаяся вода – приливная волна океанов, непрерывно наступающая на сушу, и потоки речных вод, текущих к морям и океанам.

Мощность всех рек земного шара измеряется миллиардами киловатт, используется же всего примерно 40 млн. кВт, т.е. пока порядка 1 %. Потенциальная мощность рек СССР достигает 400 млн. кВт, а из них используется пока около 20 млн. кВт.

Если бы мы лишились угля, нефти и других источников энергии и перешли бы только на белый уголь – энергию рек, то при полном использовании этой энергии (предполагая, что построены все возможные гидроэлектростанции на всех реках земного шара) пришлось бы уменьшить потребление энергии на земном шаре. Расход энергии на земном шаре в настоящее время превышает миллиард киловатт – одной лишь гидроэнергии человечеству уже сейчас только-только хватило бы.

Ну, а приливная волна? Ее энергия весьма значительна, хотя примерно в десять раз меньше энергии рек. Увы, эта энергия пока что используется лишь в самой незначительной степени: пульсирующий характер приливов затрудняет ее использование. Однако советские и французские инженеры нашли практические пути к преодолению этой трудности. Теперь приливная электростанция обеспечивает выдачу гарантированной мощности в часы максимального потребления. Во Франции построена и уже работает опытная ПЭС Сен Мало, а в СССР строится станция в Кислой Губе в районе Мурманска. Эта последняя послужит опытом для сооружения проектируемых мощных ПЭС в Лумбовском и Мезенском заливах Белого моря. Во Франции к 1965 г. будет пущена приливная станция мощностью в 240 тыс. кВт.

Вода в океанах на больших глубинах имеет температуру, отличающуюся от температуры поверхностных слоев на 10–20°. Значит, можно построить тепловую машину, нагревателем которой в средних широтах явился бы верхний слой воды, а холодильником – глубинный. КПД такой машины будет 1–2 %. Но это, конечно, тоже очень неконцентрированный источник энергии.

Солнце, воздух и вода – даровые источники энергии*16. Даровые в том смысле, что использование их энергии не влечет за собой уменьшения каких бы то ни было земных ценностей. Работа ветряков не уменьшает количества воздуха на земном шаре, работа гидроэлектростанций не уменьшает глубины рек, не используются запасы земных веществ и при работе солнечных машин.

В этом смысле описанные до сих пор источники энергии обладают большим преимуществом по сравнению с топливом. Топливо сжигается. Использование энергии каменного угля, нефти, дерева – это невозвратимое уничтожение земных ценностей. Было бы очень заманчиво осуществить фотохимический двигатель, т.е. получать энергию при помощи механизма фотосинтеза, который обеспечивает накопление энергии топлива. Зеленый лист любого растения – это завод, который из молекул воды и углекислого газа благодаря энергии солнечных лучей вырабатывает органические вещества с большим запасом энергии в молекулах. Этот процесс в растениях имеет малый КПД (~1 %), но и при этом ежегодно запасаемая растениями энергия равна 2·10 15 кВт·ч, т.е. в сотни раз превышает годовую выработку энергии всеми электростанциями мира. Механизм фотосинтеза до конца еще не разгадан, но нет сомнения, что в будущем удастся не только осуществить фотосинтез в искусственных условиях, но и повысить при этом его КПД. Однако в этой области человек пока не может состязаться с природой и вынужден пользоваться ее дарами, сжигая дрова, нефть, уголь.

Каковы же запасы топлива на земном шаре? К обычному топливу, т.е. такому, которое горит от поднесенного огня, относятся уголь и нефть. Их запасы на земном шаре крайне малы. При современном расходовании нефти ее разведанные запасы придут к концу уже к началу следующего тысячелетия. Запасов каменного угля несколько больше. Количество угля на Земле выражают цифрой в десять тысяч миллиардов тонн. Килограмм угля при сгорании дает 7000 ккал тепла. Таким образом, общие энергетические запасы угля измеряются цифрой порядка 10 20 ккал. Это в тысячи раз больше годового потребления энергии.

Запас энергии на тысячу лет надо признать очень малым. Тысяча лет – это много только по сравнению с длительностью человеческой жизни, а человеческая жизнь – ничтожное мгновение по сравнению с жизнью земного шара и с временем существования цивилизованного мира. Кроме того, потребление энергии на душу населения непрерывно растет. Поэтому, если бы запасы горючего сводились к нефти и углю, то положение дел на Земле с энергетическими запасами следовало бы считать катастрофическим.

В начале сороковых годов нашего века была доказана практическая возможность использования совершенно нового вида горючего, называемого ядерным. Мы располагаем значительными запасами ядерного горючего.

Здесь не место останавливаться на устройстве атома и его сердцевины – атомного ядра, на том, каким образом можно извлечь внутреннюю энергию из атомных ядер. Выделение ядерной энергии может быть осуществлено лишь в значительных масштабах на так называемых атомных электростанциях. Ядерная энергия выделяется в виде тепла, которое используется совершенно так же, как на электростанциях, работающих на каменном угле.

В настоящее время мы можем выделять энергию в промышленных количествах из двух элементов – урана и тория. Особенность ядерного горючего, являющаяся его основным достоинством, – это исключительная концентрированность энергии. Килограмм ядерного горючего отдает энергии в 2,5 миллиона раз больше, чем килограмм каменного угля. Поэтому, несмотря на относительно малую распространенность этих элементов, их запасы на земном шаре в энергетическом выражении довольно значительны. Примерные расчеты показывают, что запасы ядерного горючего существенно больше, чем запасы каменного угля. Однако приобщение к топливу урана и тория не решает принципиальную задачу освобождения человечества от энергетического голода – запасы минералов в земной коре ограничены.

Но уже сейчас можно указать поистине безграничный источник энергии. Речь идет о так называемых термоядерных реакциях. Они возможны лишь при сверхвысоких температурах порядка двадцати миллионов градусов. Эта температура пока что достигается лишь при атомных взрывах.

Сейчас перед исследователями стоит задача получения высоких температур не взрывным путем, и первые попытки достигнуть температуры в миллион градусов увенчались успехом.

Если физики сумеют работать с необходимыми высокими температурами в десятки миллионов градусов, получаемыми не взрывным путем, то управляемая реакция слияния атомных ядер водорода (она и носит название термоядерной) станет возможной. При этой реакции будет выделяться огромная энергия на килограмм горючего. Для того чтобы обеспечить сейчас человечество энергией на один год, достаточно выделить термоядерную энергию путем переработки десятка миллионов тонн воды.

В мировом океане запасено столько термоядерной энергии, что ее хватит для покрытия всех энергетических потребностей человечества в течение времени, превышающего возраст солнечной системы. Вот уж действительно безграничный источник энергии.

Из книги Физическая химия: конспект лекций автора Березовчук А В

2. Химические источники тока ХИТы – устройства, которые применяют для непосредственного преобразования энергии химической реакции в электрическую. ХИТы применяются в различных областях техники. В средствах связи: радио, телефон, телеграф; в электроизмерительной

Из книги Звезды: их рождение, жизнь и смерть [Издание третье, переработанное] автора Шкловский Иосиф Самуилович

Глава 8 Ядерные источники энергии излучения звезд В § 3 мы уже говорили о том, что источниками энергии Солнца и звезд, обеспечивающими их светимость в течение гигантских «космогонических» промежутков времени, исчисляемых для звезд не слишком большой массы миллиардами

Из книги Пять нерешенных проблем науки автора Уиггинс Артур

Глава 16 Остатки вспышек сверхновых - источники рентгеновского и радиоизлучения В результате взрыва звезды, который наблюдается как явление сверхновой, вокруг нее образуется туманность, расширяющаяся с огромной скоростью: как правило, порядка 10 000 км/с. Большая

Из книги Астрономия древнего Египта автора Куртик Геннадий Евсеевич

Глава 21 Пульсары как источники радиоизлучения Пожалуй, труднее всего для пульсаров определяются две основные характеристики всякого «нормального» источника радиоизлучения - поток и спектр. Эти трудности связаны прежде всего с самой природой пульсаров. Дело в том,

Из книги НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. автора Тесла Никола

Источники для углубленного изучения Источники общего характера КнигиAnton Ted. Bold Science; Seven Scientists Who Are Changing Our World. N.Y.Kaku Michio. Hyperspace. London: Oxford University Press, 1994.Kaku Michio. Visions. N.Y.: Anchor Books, 1997.Kuhn Robert L. Closer to Truth Challenging Current Belief. N.Y.: McGraw-Hill 2000.Периодические изданияDiscoverScienceScience WeekScientific American (или

Из книги Источники питания и зарядные устройства автора

Источники общего характера КнигиAnton Ted. Bold Science; Seven Scientists Who Are Changing Our World. N.Y.Kaku Michio. Hyperspace. London: Oxford University Press, 1994.Kaku Michio. Visions. N.Y.: Anchor Books, 1997.Kuhn Robert L. Closer to Truth Challenging Current Belief. N.Y.: McGraw-Hill 2000.Периодические изданияDiscoverScienceScience WeekScientific American (или www.sciam. com)Узел Всемирной Паутины

Из книги О чем рассказывает свет автора Суворов Сергей Георгиевич

Источники и публикации Наиболее ранние упоминания названий светил встречаются в «Текстах пирамид», датируемых XXV-XXIII в. до н. э., - религиозном памятнике, во многом еще до конца не понятом (Faulkner, 1969; Mercer, 1952). Сами пирамиды представляют также интерес с точки зрения истории

Из книги Кто изобрел современную физику? От маятника Галилея до квантовой гравитации автора Горелик Геннадий Ефимович

ИСТОЧНИК ЧЕЛОВЕЧЕСКОЙ ЭНЕРГИИ - ТРИ ПУТИ ПОЛУЧЕНИЯ ЭНЕРГИИ ОТ СОЛНЦА Во-первых, позвольте спросить: Откуда появляется движущая энергия? Что является источником, который все движет? Мы видим океан, который вздымается и опадает, текущие реки, ветер, дождь, град и снег,

Из книги Астероидно-кометная опасность: вчера, сегодня, завтра автора Шустов Борис Михайлович

Из книги Гравитация [От хрустальных сфер до кротовых нор] автора Петров Александр Николаевич

Два круговорота вещества и энергии на Земле Достигнув Земли, солнечная энергия способствует осуществлению на ней ряда процессов, без которых была бы невозможна органическая жизнь в ее высокой стадии. Особенно замечательны два круговорота веществ и энергии на Земле,

Из книги автора

Мощные источники энергии в ядрах радиогалактик Не все явления, наблюдаемые астрофизиками, можно объяснить посредством ядерной реакции превращения водорода в гелий. Уже около полусотни лет ученые изучают космические лучи, приходящие к нам на Землю из далеких глубин

Из книги автора

Из книги автора

Основные источники Физики Архимед. Сочинения. М.: Физматгиз, 1962.Бор Н. Избранные научные труды: В 2. М.: Наука, 1970–1971.Bohr N. Collected Works. Vol. 9 Nuclear Physics, 1929–1952. Amsterdam: North-Holland, 1986.Бронштейн М.П. Современное состояние релятивистской космологии // Успехи физических наук. 1931. № 11. С.

Из книги автора

4.5. Источники околоземных комет Из вышесказанного ясно, что в околоземном пространстве наблюдаются кометы, принадлежащие различным динамическим классам. Рассмотрим, что же известно в данный момент об источниках комет с такими разными орбитальными параметрами и о тех

Из книги автора

Источники гравитационного излучения – Возьмем две звезды, разгоним почти до скорости света и столкнем. Что произойдет? – Нехилый коллайдер получится… Из форума Слабость гравитационного излучения оставляет мало шансов для его регистрации. Где же искать подходящие

Из книги автора

2. Материальные источники В тексте обсуждается и утверждается, что искривление пространства-времени – это результат воздействия материальных источников. Что они собой представляют и как представлены формально? Эти источники являются материей в самом общем понимании.

Для существования и развития человеческого общества необходимы . Решающая роль в развитии мировой энергетики принадлежит ресурсам энергии, выяснению вопроса о том, какими геологическими и разведанными запасами различных источников энергии и, в частности, нефти и газа, располагает человечество, каков энергетический потенциал нашей планеты.

По степени долговечности источники энергии делятся на возобновляемые и не возобновляемые. К возобновляемым или неисчерпаемым источникам энергии относятся: солнечная энергия, энергия ветра, энергия приливов и отливов, гидроэнергия, геотермальная энергия.

Не возобновляемые источники энергии: атомная энергия и энергия каустобиолитов. Каустобиолиты - это горючие полезные ископаемые (каусто - горючий, биос - органический, литос - камень). К ним относятся каменный уголь, нефть, природные углеводородные газы, сланцы, торф.

Мировые источники энергии: солнечная энергия

Ежедневно на Землю поступает 1,5⋅10*22 Дж солнечной энергии . Около 30 % солнечных лучей отражается облаками и земной поверхностью, но большая часть проникает через атмосферу. Нагревая атмосферу, океаны и сушу, солнечное тепло вызывает ветры, дожди, снегопады и океанские течения.

Однако вся энергия вновь излучается в холодный космос, сохраняя земную поверхность в тепловом равновесии.

Небольшая часть солнечной энергии аккумулируется в озёрах и реках, другая же часть - в живых растениях и животных. Солнечная энергия обладает такими свойствами, которые не встречаются ни у одного другого источника: она возобновляема, экологически чиста, управляема, по величине в тысячи раз превосходит всю ту энергию, которая используется в настоящее время.

Солнечная энергия используется для обогрева теплиц, домов, аккумулируется в солнечных батареях, которые преобразуют солнечную радиацию в электроэнергию, на космических кораблях применяются солнечные панели или фотоэлементы, обеспечивающие космонавтов электроэнергией при работе в открытом космосе. Недостаток этой энергии в том, что солнечные лучи рассеиваются земной поверхностью и требуется большая поверхность, собирающая солнечный свет.

Энергия ветра

Примерно 46 % поступающей солнечной энергии поглощается океаном, сушей и атмосферой. Эта энергия вызывает ветры, волны и океанские течения, нагревает моря и порождает колебания погоды. Оценка энергии ветра в глобальном масштабе – порядка 10*15 Вт, однако большая часть энергии сосредоточена в ветрах, дующих на заоблачных высотах, и, следовательно, недоступна для использования на поверхности суши. Устойчивые поверхностные ветры обладают мощностью порядка 10*12 Вт и могут быть использованы ветряными установками и в перевозках по морю.

В последние годы производство ветровой энергии в мире ежегодно увеличивается на 28 %. Предполагается, что к 2020 году на эту энергию будет приходиться до 10 % производимого в мире электричества.

В 2005 году принят закон Азербайджанской Республики о применении энергии Солнца и ветра, которых достаточно в стране.

Энергия приливов и отливов

Приливы являются результатом гравитационного притяжения Луны и Солнца, причём воздействие Луны значительно больше. Сила приливов является выражением силы вращения планеты. Высота приливов не везде одинакова.

Она редко превышает один метр при больших глубинах в океане, а над континентальным шельфом может достигать до 20 метров. Мощность приливов оценивается в 0,85⋅10*20 Дж. Во Франции (река Ранс) и в России (Кислая Губа) станции уже генерируют электричество из приливных волн. В утилизации приливов и отливов существует много проблем. Для эффективной работы станций требуется высота приливной волны более 5 м и наличие перекрытых лёгкими плотинами заливов - эстуариев. Но почти везде прибрежные приливы имеют высоту около 2 м и только, примерно, 30 мест на Земле удовлетворяют указанным требованиям. Наиболее важными из них являются: два смежных залива - Фанди (Канада) и Пассамукуодди (США); французское побережье вдоль Ла-Манша, где станция на Ранс успешно действует уже много лет, в Ирландском море эстуарии рек Англии, Белое море (Россия) и побережье Кимберли (Австралия). Энергия приливов может иметь достаточно большое значение в будущем, потому что является одной из немногих энергетических систем, которые действуют без серьёзного ущерба для окружающей среды.

Гидроэнергия

Примерно 23 % солнечной радиации уходит на испарение воды, выпадающей затем в виде дождя и снега.

Энергия воды представляет собой возобновляемые ресурсы. Примитивным образом сила воды использовалась за тысячи лет до двадцатого столетия, когда началось широкомасштабное перекрытие рек для производства электроэнергии. Из всех возобновляемых энергетических ресурсов наиболее интенсивно используется сила воды. Но неблагоприятным обстоятельством является то, что плотины имеют конечный и, скорее всего, короткий срок жизни. Движущийся поток воды переносит груз тонких глинистых частиц в виде суспензии; как только поток перекрывается, и скорость воды падает, этот материал отлагается, и резервуар может быть целиком заполнен ими за 50-200 лет.

Наибольший неосвоенный потенциал этой энергии может быть использован там, где имеются большие запасы энергии воды.

Геотермальная энергия

При погружении вглубь земли на 1 км температура увеличивается от 15 до 75 С. В ядре земли температура, вероятно, превышает 5000 C. В среднем из недр к поверхности поступает 6,3⋅10*6 Дж энергии. Кроме того, геотермальная энергия связана с распадом таких радиоактивных элементов как U

238 , U 235 , Th 232 , K 40, которые в рассеянном виде распространены в недрах повсеместно. При этом подземные воды нагреваются и выходят на поверхность в виде пара и горячей воды (гейзеры). Геотермальные горячие воды используются в Исландии, Японии, Италии, Индонезии, на Филиппинах, России, Америке и Новой Зелландии для обогрева домов, плавательных бассейнов, теплиц. Но они имеют всё же малое значение по сравнению с производством электроэнергии.

Атомная энергия

Атомную энергию можно получить с помощью двух процессов. Первый - слияние или синтез лёгких элементов, таких как водород и литий, при котором образуются более тяжёлые элементы. Это процессы, идущие на Солнце и в водородной бомбе, но они трудно контролируемы; возможно, в будущем синтез таких элементов может стать главным источником энергии. Второй процесс - деление (распад) тяжёлых элементов, таких как уран и торий. Это процесс, идущий в атомной бомбе. Поскольку эта реакция может быть контролируема, деление тяжёлых элементов уже используется для генерации электричества на атомных электростанциях. Природной способностью к распаду обладает только уран-235, который составляет всего 0,7 % общего количества природных атомов урана. Цепная реакция урана-235 впервые была осуществлена профессором Энрико Ферми 2 декабря 1942 года в одном из наиболее важных экспериментов в истории Земли. Стоимость выделения атомов урана-235 высока. Однако при распаде одного атома урана-235 высвобождается 3,2⋅10*11 Дж энергии.

Поскольку в 1 г атома урана-235 содержится около 2,56⋅10-21 атомов, то при распаде 1 г урана образуется около 8,19⋅10*10 Дж, что эквивалентно энергии, получаемой при сгорании 2,7 т угля. В настоящее время на уране-235 работает около 300 атомных электростанций. Первое место по использованию атомной энергии занимает США (около 50 %), затем Европа (30 %) и Япония (12 %). При использовании атомной энергии остро стоит проблема безопасности, а также проблема утилизации радиоактивных отходов.

Горючие ископаемые

В настоящее время используются три вида горючих ископаемых: каменный уголь, нефть и природный газ. На их долю приходится около 90 % мировой энергии. Уголь. Мировые запасы всех видов углей оцениваются в 13800 млрд. т., а дополнительные потенциальные ресурсы - в 6650 млрд. т. География распределения такова: примерно 43 % углей мира залегают в России, 29 % - в Северной Америке, 14,5 % - в странах Азии, главным образом в Китае, и 5,5 % - в Европе. На остальной мир приходится 8 %.

Хотя уголь во всём мире не является ведущим видом топлива, в некоторых странах он всё ещё преобладает, и, возможно, в будущем трудности в снабжении нефтью и газом приведут к возрастающему использованию угля. При использовании угля возникает много трудностей. Он содержит от 0,2 % до 7 % серы, присутствующей в основном в виде пирита FeS2, сульфата закисного железа FeSO4⋅7H2O, гипса CaSO4⋅2H2 O и некоторых органических соединений.

Когда уголь сгорает, выделяется окисленная сера, выбросы которой в атмосферу вызывают кислотные дожди и смог. Другая проблема - это сама добыча угля. Подземные методы разработки трудны и даже опасны. Разработка открытым методом более эффективна и менее опасна, но вызывает нарушение поверхностного слоя на большой площади. В современном мире основное применение в качестве источников энергии имеют нефть и природные углеводородные газы.

Cтраница 1


Основные источники энергии, используемые человеком.  

Основной источник энергии, используемый автотрофа-ми, - Солнце. Образно говоря, автотрофы являются кормильцами биосферы: они не только питаются сами, но и кормят (своим телом) других. Поэтому их называют продуцентами. Биомасса, создаваемая ими, называется первичной.  

Основными источниками энергии на нефтеперерабатывающих заводах являются тепло, водяной пар и электроэнергия. Для получения всех видов энергии расходуется до 6 % перерабатываемой нефти, причем половина этого - количества сжигается на ТЭЦ, а другая - в трубчатых печах технологических установок. В связи с этим одной из важнейших проблем нефтегазоперфаботки является повышение технико-экономической эффективности всех технологических процессов.  

Линии излучения некоторых лазеров.| Линии излучения некоторых лазеров, слабо или умеренно поглощаемые в атмосфере.  

Основным источником энергии для всех процессов, происходящих в биосфере, является солнечное излучение. Атмосфера, окружающая Землю, слабо поглощает коротковолновое излучение Солнца, которое, в основном, достигает земной поверхности. Некоторая часть солнечного излучения поглощается и рассеивается атмосферой. Поглощение падающей солнечной радиации обусловлено наличием в атмосфере озона, углекислого газа, паров воды, аэрозолей.  

Основным источником энергии, аккумулируемой в аденозинтрифосфате (АТФ), является глюкоза. В клетках глюкоза с помощью ферментных систем сначала подвергается бескислородному расщеплению до двух молекул молочной кислоты СН3СН (ОН) СООН. Энергия, выделяемая при расщеплении одной молекулы глюкозы при гликолизе, аккумулируется в двух вновь образованных молекулах АТФ. По мере необходимости АТФ гидролизуется на аденозиндифосфат (АДФ) и фосфорную кислоту с выделением около 10 ккал тепловой энергии. Молочная кислота подвергается дальнейшему кислородному расщеплению в последовательных окислительно-восстановительных реакциях до углекислого газа и водорода, который, в свою очередь, окисляется кислородом воздуха до воды. Энергия, освобождаемая при этом, расходуется на регенерацию АТФ, то есть на присоединение к АДФ третьего остатка фосфорной кислоты. В результате полного расщепления двух молекул молочной кислоты выделяется энергия, достаточная для синтеза 36 молекул АТФ из АДФ.  

Основным источником энергии на Земле является Солнце.  

Основными источниками энергии, потребляемой промышленностью, являются горючие ископаемые и продукты их переработки, энергия воды, биомасса и ядерное топливо. В значительно меньшей степени используются энергия ветра, солнца, приливов, геотермальная энергия. Мировые запасы основных видов топлива оцениваются в 1 28 - Ю13 тонн УТ, в том числе, ископаемые угли 1 12 - Ю13 тонн, нефть 7 4 - Ю11 тонн и природный газ 6 3 - Ю11 тонн УТ.  

Основным источником энергии (тепла) в процессе азотирования является реакция азотирования, которая дает до 96 % от общего прихода энергии. Электроэнергия, подводимая при разогреве печи, составляет всего 2 - 3 % от общего прихода энергии.  

Основным источником энергии, поступающей на Землю, является Солнце. Солнечное излучение формируется в результате интенсивного взаимодействия с веществом в верхних слоях Солнца и находится с ним в равновесии. Электромагнитное излучение Солнца можно охарактеризовать двумя температурами - энергетической, которая определяется законом Стефана-Больцмана, и спектральной, определяемой из закона Вина. Для равновесного излучения эти температуры равны. Показателем неравновесности излучения может служить разность энергетической и спектральной температур. По мере удаления от поверхности Солнца энергетическая температура падает, а спектральная температура остается без изменения. Таким образом, неравновесность излучения по мере удаления от Солнца возрастает. Поэтому с увеличением расстояния от Солнца создаются более благоприятные условия для процессов самоорганизации, которые протекают в неравновесных условиях. С другой стороны, сложность образуемых систем зависит от температуры. С увеличением расстояния от Солнца температура падает, поэтому существует некоторое оптимальное расстояние, на котором возможно образование систем максимальной сложности. Уровень самоорганизации системы определяется степенью отклонения от равновесного состояния и уровнем сложности. В солнечной системе наиболее оптимальное сочетание названных параметров наблюдается на расстояниях, соответствующих орбите Земли. Таким образом, в Солнечной системе наибольший уровень самоорганизации может быть достигнут на Земле.  

Основными источниками энергии в пластах являются напор краевой воды, подошвенной воды, газа и газовой шапки; давление растворенного газа в нефти в момент выделения газа из раствора; сила тяжести; упругость пласта и насыщающих его нефти, воды и газа. Эти силы могут проявляться раздельно или совместно.  

Основными источниками энергии в пластах являются напор краевой воды, подошвенной воды, газа газовой шапки, давление растворенного газа в нефти в момент выделения газа из раствора, сила тяжести, упругость пласта и насыщающих его нефти, воды и газа. Эти силы могут проявляться раздельно или совместно. Таким образом, энергетические ресурсы нефтеносного пласта характеризуются существующим в нем давлением. Чем выше давление, тем больше при прочих равных условиях запасы энергии и тем полнее может быть использована залежь нефти.  

Основным источником энергии в промышленности, сельском хозяйстве и в других отраслях народного хозяйства служит топливо. В зависимости от физического состояния топливо подразделяется на твердое, жидкое и газообразное.  

Основными источниками энергии для человечества были мускульная сила людей и рабочего скота, а для обогрева жилищ и приготовления пищи использовалась древесина и навоз домашних животных. Однако доля древесины и древесного угля была велика, а мускульная сила человека и животных применялась по-прежнему.  

Самая большая энергетическая машина в мировом пространстве, мощность которой исчисляется не в миллионах и не в миллиардах, а в биллионах , - это Солнце. на Земле.

Каменный уголь, сгорающий в топках паровых котлов и испаряющий воду, возник из лесов, существовавших миллионы лет тому назад. Эти леса росли под тем же солнцем, под которым зреют наши хлеба, Солнце испаряет воду, которая приводит в движение водяные турбины.

Оно же создает воздушные течения, заставляющие работать ветряные двигатели. Великий русский ботаник Тимирязев говорил, что солнечный луч - это источник энергии , который в конечном счете приводит в движение не только огромный маховик мощной , но и кисть художника, и перо писателя.

Земля - аккумулятор солнечной энергии

Нашу планету Земля можно сравнить с гигантским приемником и аккумулятором солнечной энергии . Трудно представить себе то количество энергии, которое Земля получает от Солнца. Оно составляет двести шестьдесят биллионов лошадиных сил . 260 000 000 000 000 - это 260 миллионов миллионов, что в 100 000 раз превышает мощность всех энергетических станций и двигателей , созданных рукою человека!

Использование энергии Солнца

Уже десятки лет тому назад человек пытался непосредственно использовать энергию Солнца . Первые «солнечные» станции были построены в Крыму, в Египте и по ту сторону Атлантического океана, в Калифорнии. Большие вращающиеся вогнутые алюминиевые зеркала улавливают солнечные лучи и направляют их на паровой котел. Пар из парового котла поступает в паровую машину или турбину, которые вращают вал генератора, вырабатывающего электрический ток.

Так Солнце превращает энергию водяного пара в электричество, зажигающее миллионы солнц в наших жилищах. В Средней Азии существуют «солнечные» бани и «солнечные» плиты для варки пищи. Большая «солнечная» станция с площадью зеркала около 10 квадратных километров могла бы снабжать электроэнергией круглые сутки всю Германию. И это используя только лучистую энергию Солнца - источника энергии. Но не только солнце может служить людям источником энергии.

Земля - мощный источник энергии

Наша Земля может быть не только приемником и аккумулятором энергии Солнца, но и мощным источником энергии . Внутри ее кроется колоссальная энергия. Вспомним только о горячих источниках, и огнедышащих вулканах. Пока мы знаем, что температура ядра Земли достигает 4000°С . Если в глубь Земли пробуравить отверстие длиною 20-30 километров и подвести туда воду, то на наших глазах Земля превратится в гигантский паровой котел.

Горячим паром, выходящим из недр Земли, можно было бы не только приводить в движение машины, но и растопить льды на полюсах Земли, оттаять вечную мерзлоту в Сибири и превратить в цветущие сады ледяные и песчаные пустыни. Люди могли бы расходовать энергии в десять раз больше по сравнению с той энергией, которую они получают от каменного угля. Один французский ученый предлагает использовать «паровой котел» Земли дважды.

Воду можно направлять в глубокие скважины, чтобы использовать ее для работы гидроэлектростанции. Там, в глубине Земли, вода превратится в пар, и этот пар, в свою очередь, будет совершать полезную работу. Это не утопия, а технические расчеты, из которых созреют смелые проекты.

Осуществление их в наших руках. Уже сегодня в Италии, в Тосканской области, водяные пары, выходящие из земли, используются для получения электрической энергии. Если бы удалось использовать Везувий, можно было ежегодно экономить по 1350000 тонн каменного угля. Все это не менее увлекательно, чем фантастические романы Жюля Верна.

Энергия атомов

Но солнечные и вулканические станции - далеко не пределы возможного. Энергия атомов , крошечных строительных кирпичиков космоса, значительно превышает тепловую энергию, скрывающуюся в недрах Земли . 27 июня 1954 года впервые в мире в Дубне под Москвой была запущена в эксплуатацию атомную электростанцию Академии наук СССР. Совершенно ясно она доказывает превосходство атомной энергии над всеми другими видами энергии.

Обладая мощностью в 5000 киловатт, она расходует за 24 часа только 30 граммов урана . Тепловая электростанция такой же мощности за это время потребовала бы 80-100 тонн угля . Это значит, что из одного куска урана можно получить в два миллиона раз больше энергии, чем из такого же куска каменного угля.

Достаточно 70 граммов урана, чтобы заменить работу такой мощной гидроэлектростанции, как Днепровская, в течение целого года. Мощность двигателей атомного ледокола «В. И. Ленин» составляет 44 000 лошадиных сил. Ученые занимаются также конструированием атомных реактивных самолетов и ракет, которые открывают новые перспективы для космических полетов и посадки на другие планеты мира.

Известно, что шаг от паровой турбины к атомному двигателю был значительно короче, чем от к паровой машине . Развитие техники не знает остановок и преград. Технику двигают люди. Еще люди не исчерпали запасы каменного угля, нефти, урана, как ученые нашли способы использования энергии атома водорода. Тогда бескрайние моря и океаны превратятся в неисчерпаемые источники энергии для человечества будущего.

В детстве я любила помечтать. В своих мечтах я отправлялась в захватывающие межпланетные путешествия по Солнечной системе. Повзрослев, я оставила эти мечты далеко позади. Однако, мой интерес к неизведанному не угас. Он и подтолкнул меня к расширению кругозора и прочтению различных книг и статей о космосе. Частью этой информации я с удовольствием поделюсь и с вами.

Сравнение планет, входящих в Солнечную систему

Всего насчитывается девять планет.

Меркурий отличается от остальных планет огромной амплитудой температур. Особенностью также является очень быстрое движение по орбите. Отсутствует атмосфера.

Венера вращается в противоположном направлении по сравнению с большинством планет. Ее размеры, а также состав и структура приближены к земным. Однако, температура и давление на ее поверхности в разы превышает земные показатели.

Наш дом - Земля. Ее отличительные особенности:

  • сильное магнитное поле;
  • большая гравитация;
  • наличие гидросферы;
  • наличие жизни;
  • большой показатель плотности;
  • наличие сравнительно большого спутника.

На Марсе крайне низкое давление и большая амплитуда температур.

Следующие четыре планеты: Юпитер, Сатурн, Уран и Нептун. Их можно условно отнести к другой группе – планет-гигантов. Они состоят из газов, в центре их расположено жидкое ядро. Они обладают сильнейшим магнитным полем и вращаются с очень высокой скоростью. Отличительная их особенность – наличие колец и обилие спутников. От планет земной группы они отделены грядой из астероидов.

И самая последняя и отдаленная мини-планета Плутон, которую современные астрономы вычеркивают из числа планет.

Источники энергии на Земле

Все процессы, протекающие на поверхности Земли, подпитываются несколькими источниками энергии.

Основным и самым главным источником энергии для всех процессов на нашей планете, конечно же, является солнечная энергия.

Я считаю, что ее значение просто невозможно переоценить. Что дает нам энергия солнца? Свет, тепло, поддержания жизни всему живому. Говоря об источниках энергии, не стоит забывать и про энергию ветра и воды.

travelask.ru

Основной источник - энергия - Большая Энциклопедия Нефти и Газа, статья, страница 1

Основной источник - энергия

Cтраница 1

Основные источники энергии, используемые человеком.  

Основной источник энергии, используемый автотрофа-ми, - Солнце. Образно говоря, автотрофы являются кормильцами биосферы: они не только питаются сами, но и кормят (своим телом) других. Поэтому их называют продуцентами. Биомасса, создаваемая ими, называется первичной.  

Основными источниками энергии на нефтеперерабатывающих заводах являются тепло, водяной пар и электроэнергия. Для получения всех видов энергии расходуется до 6 % перерабатываемой нефти, причем половина этого - количества сжигается на ТЭЦ, а другая - в трубчатых печах технологических установок. В связи с этим одной из важнейших проблем нефтегазоперфаботки является повышение технико-экономической эффективности всех технологических процессов.  

Основным источником энергии для всех процессов, происходящих в биосфере, является солнечное излучение. Атмосфера, окружающая Землю, слабо поглощает коротковолновое излучение Солнца, которое, в основном, достигает земной поверхности. Некоторая часть солнечного излучения поглощается и рассеивается атмосферой. Поглощение падающей солнечной радиации обусловлено наличием в атмосфере озона, углекислого газа, паров воды, аэрозолей.  

Основным источником энергии, аккумулируемой в аденозинтрифосфате (АТФ), является глюкоза. В клетках глюкоза с помощью ферментных систем сначала подвергается бескислородному расщеплению до двух молекул молочной кислоты СН3СН (ОН) СООН. Энергия, выделяемая при расщеплении одной молекулы глюкозы при гликолизе, аккумулируется в двух вновь образованных молекулах АТФ. По мере необходимости АТФ гидролизуется на аденозиндифосфат (АДФ) и фосфорную кислоту с выделением около 10 ккал тепловой энергии. Молочная кислота подвергается дальнейшему кислородному расщеплению в последовательных окислительно-восстановительных реакциях до углекислого газа и водорода, который, в свою очередь, окисляется кислородом воздуха до воды. Энергия, освобождаемая при этом, расходуется на регенерацию АТФ, то есть на присоединение к АДФ третьего остатка фосфорной кислоты. В результате полного расщепления двух молекул молочной кислоты выделяется энергия, достаточная для синтеза 36 молекул АТФ из АДФ.  

Основным источником энергии на Земле является Солнце.  

Основными источниками энергии, потребляемой промышленностью, являются горючие ископаемые и продукты их переработки, энергия воды, биомасса и ядерное топливо. В значительно меньшей степени используются энергия ветра, солнца, приливов, геотермальная энергия. Мировые запасы основных видов топлива оцениваются в 1 28 - Ю13 тонн УТ, в том числе, ископаемые угли 1 12 - Ю13 тонн, нефть 7 4 - Ю11 тонн и природный газ 6 3 - Ю11 тонн УТ.  

Основным источником энергии (тепла) в процессе азотирования является реакция азотирования, которая дает до 96 % от общего прихода энергии. Электроэнергия, подводимая при разогреве печи, составляет всего 2 - 3 % от общего прихода энергии.  

Основным источником энергии, поступающей на Землю, является Солнце. Солнечное излучение формируется в результате интенсивного взаимодействия с веществом в верхних слоях Солнца и находится с ним в равновесии. Электромагнитное излучение Солнца можно охарактеризовать двумя температурами - энергетической, которая определяется законом Стефана-Больцмана, и спектральной, определяемой из закона Вина. Для равновесного излучения эти температуры равны. Показателем неравновесности излучения может служить разность энергетической и спектральной температур. По мере удаления от поверхности Солнца энергетическая температура падает, а спектральная температура остается без изменения. Таким образом, неравновесность излучения по мере удаления от Солнца возрастает. Поэтому с увеличением расстояния от Солнца создаются более благоприятные условия для процессов самоорганизации, которые протекают в неравновесных условиях. С другой стороны, сложность образуемых систем зависит от температуры. С увеличением расстояния от Солнца температура падает, поэтому существует некоторое оптимальное расстояние, на котором возможно образование систем максимальной сложности. Уровень самоорганизации системы определяется степенью отклонения от равновесного состояния и уровнем сложности. В солнечной системе наиболее оптимальное сочетание названных параметров наблюдается на расстояниях, соответствующих орбите Земли. Таким образом, в Солнечной системе наибольший уровень самоорганизации может быть достигнут на Земле.  

Основными источниками энергии в пластах являются напор краевой воды, подошвенной воды, газа и газовой шапки; давление растворенного газа в нефти в момент выделения газа из раствора; сила тяжести; упругость пласта и насыщающих его нефти, воды и газа. Эти силы могут проявляться раздельно или совместно.  

Основными источниками энергии в пластах являются напор краевой воды, подошвенной воды, газа газовой шапки, давление растворенного газа в нефти в момент выделения газа из раствора, сила тяжести, упругость пласта и насыщающих его нефти, воды и газа. Эти силы могут проявляться раздельно или совместно. Таким образом, энергетические ресурсы нефтеносного пласта характеризуются существующим в нем давлением. Чем выше давление, тем больше при прочих равных условиях запасы энергии и тем полнее может быть использована залежь нефти.  

Основным источником энергии в промышленности, сельском хозяйстве и в других отраслях народного хозяйства служит топливо. В зависимости от физического состояния топливо подразделяется на твердое, жидкое и газообразное.  

Основными источниками энергии для человечества были мускульная сила людей и рабочего скота, а для обогрева жилищ и приготовления пищи использовалась древесина и навоз домашних животных. Однако доля древесины и древесного угля была велика, а мускульная сила человека и животных применялась по-прежнему.  

Страницы:      1    2    3    4

www.ngpedia.ru

Источники энергии на Земле. Движение. Теплота

Источники энергии на Земле

Не все источники энергии равноценны. Одни представляют лишь принципиальный интерес, с другими связано существование цивилизации. Одни источники практически неисчерпаемы, другим придет конец в ближайшие столетия, а то и десятилетия.

Уже несколько миллиардов лет посылает свои живительные лучи на Землю главный опекун нашей планетной системы – Солнце. Этот источник энергии можно смело назвать неисчерпаемым. Каждый квадратный метр земной поверхности получает от Солнца энергию средней мощности около 1,5 кВт; за год это составит около 10 миллионов килокалорий энергии – такое количество тепла дают сотни килограммов угля. Сколько же тепла получает от Солнца весь земной шар? Подсчитав площадь Земли и учитывая неравномерное освещение солнечными лучами земной поверхности, получим около 1014 кВт. Это в 100 тысяч раз больше энергии, которую получают от всех источников энергии на Земле все фабрики, заводы, электростанции, автомобильные и самолетные моторы, короче – в 100 тысяч раз больше мощности энергии, потребляемой всем населением земного шара (порядка миллиарда киловатт).

Однако, несмотря на множество проектов, солнечная энергия используется совершенно незначительно. И правда, подсчет наш дал огромную цифру, – но ведь это количество энергии попадает во все места земной поверхности: и на склоны недоступных гор, и на поверхность океанов, занимающую большую часть земной поверхности, и на пески безлюдных пустынь.

Кроме того, совсем не так уже велико количество энергии, приходящейся на небольшую площадь. А ведь вряд ли целесообразно создавать приемники энергии, простирающиеся на квадратные километры. Наконец, очевидно, что заниматься превращением солнечной энергии в тепло имеет смысл в тех местностях, в которых много солнечных дней.

Интерес к прямому использованию энергии Солнца несколько возрос в последнее время в связи с появившимися возможностями непосредственно превращать солнечную энергию в электрическую. Такая возможность, естественно, весьма привлекательна. Однако до сих пор она реализована в очень незначительной степени.

Сравнительно недавно был обнаружен аккумулятор солнечной энергии у нас над головами – в верхних слоях атмосферы. Оказалось, что кислород на высоте 150–200 км над земной поверхностью вследствие действия солнечного излучения находится в диссоциированном состоянии: его молекулы разбиты на атомы. При объединении этих атомов в молекулы кислорода могло бы выделиться 118 ккал/моль энергии. Каков же общий запас этой энергии? В слое толщиной 50 км на указанной высоте запасено 1013 ккал – столько, сколько освобождается при полном сгорании нескольких миллионов тонн угля. В СССР такое количество угля добывается за несколько дней. Хотя энергия диссоциированного на больших высотах кислорода непрерывно возобновляется, здесь мы опять сталкиваемся с проблемой малой концентрации: устройство для практического использования этой энергии не так-то легко придумать.

Вернемся к обсуждению источников энергии. Воздушные массы земной атмосферы находятся в непрерывном движении. Циклоны, бури, постоянно дующие пассатные ветры, легкие бризы – многообразно проявление энергии потоков воздуха. Энергию ветра использовали для движения парусных судов и в ветряных мельницах еще в древние века. Полная среднегодовая мощность воздушных потоков для всей Земли равна не много не мало 100 млрд. кВт.

Однако не будем возлагать больших надежд на ветер как источник энергии. Мало того, что источник этот неверен – к скольким несчастьям и разочарованиям приводили ветряные штили в век парусных судов, – он обладает тем же недостатком, что и солнечная энергия: количество энергии, выделяющееся на единицу площади, относительно невелико; лопасти ветряной турбины, если создать такую для производства энергии в заводских масштабах, должны были бы достигнуть практически неосуществимых размеров. Не менее существенным недостатком является непостоянство силы ветра. Поэтому энергия ветра, или, как его поэтично называют, голубого угля, используется лишь в маленьких двигателях – «ветряках». Во время ветра они дают электроэнергию сельскохозяйственным машинам, освещают дома. Если образуется излишек энергии, он запасается в аккумуляторах (так называются хранители электроэнергии). Эти излишки можно использовать в затишье. Конечно, полагаться на ветряк нельзя – он может играть лишь роль вспомогательного двигателя.

Даровым источником энергии является также движущаяся вода – приливная волна океанов, непрерывно наступающая на сушу, и потоки речных вод, текущих к морям и океанам.

Мощность всех рек земного шара измеряется миллиардами киловатт, используется же всего примерно 40 млн. кВт, т.е. пока порядка 1 %. Потенциальная мощность рек СССР достигает 400 млн. кВт, а из них используется пока около 20 млн. кВт.

Если бы мы лишились угля, нефти и других источников энергии и перешли бы только на белый уголь – энергию рек, то при полном использовании этой энергии (предполагая, что построены все возможные гидроэлектростанции на всех реках земного шара) пришлось бы уменьшить потребление энергии на земном шаре. Расход энергии на земном шаре в настоящее время превышает миллиард киловатт – одной лишь гидроэнергии человечеству уже сейчас только-только хватило бы.

Ну, а приливная волна? Ее энергия весьма значительна, хотя примерно в десять раз меньше энергии рек. Увы, эта энергия пока что используется лишь в самой незначительной степени: пульсирующий характер приливов затрудняет ее использование. Однако советские и французские инженеры нашли практические пути к преодолению этой трудности. Теперь приливная электростанция обеспечивает выдачу гарантированной мощности в часы максимального потребления. Во Франции построена и уже работает опытная ПЭС Сен Мало, а в СССР строится станция в Кислой Губе в районе Мурманска. Эта последняя послужит опытом для сооружения проектируемых мощных ПЭС в Лумбовском и Мезенском заливах Белого моря. Во Франции к 1965 г. будет пущена приливная станция мощностью в 240 тыс. кВт.

Вода в океанах на больших глубинах имеет температуру, отличающуюся от температуры поверхностных слоев на 10–20°. Значит, можно построить тепловую машину, нагревателем которой в средних широтах явился бы верхний слой воды, а холодильником – глубинный. КПД такой машины будет 1–2 %. Но это, конечно, тоже очень неконцентрированный источник энергии.

Солнце, воздух и вода – даровые источники энергии*16. Даровые в том смысле, что использование их энергии не влечет за собой уменьшения каких бы то ни было земных ценностей. Работа ветряков не уменьшает количества воздуха на земном шаре, работа гидроэлектростанций не уменьшает глубины рек, не используются запасы земных веществ и при работе солнечных машин.

В этом смысле описанные до сих пор источники энергии обладают большим преимуществом по сравнению с топливом. Топливо сжигается. Использование энергии каменного угля, нефти, дерева – это невозвратимое уничтожение земных ценностей. Было бы очень заманчиво осуществить фотохимический двигатель, т.е. получать энергию при помощи механизма фотосинтеза, который обеспечивает накопление энергии топлива. Зеленый лист любого растения – это завод, который из молекул воды и углекислого газа благодаря энергии солнечных лучей вырабатывает органические вещества с большим запасом энергии в молекулах. Этот процесс в растениях имеет малый КПД (~1 %), но и при этом ежегодно запасаемая растениями энергия равна 2·1015 кВт·ч, т.е. в сотни раз превышает годовую выработку энергии всеми электростанциями мира. Механизм фотосинтеза до конца еще не разгадан, но нет сомнения, что в будущем удастся не только осуществить фотосинтез в искусственных условиях, но и повысить при этом его КПД. Однако в этой области человек пока не может состязаться с природой и вынужден пользоваться ее дарами, сжигая дрова, нефть, уголь.

Каковы же запасы топлива на земном шаре? К обычному топливу, т.е. такому, которое горит от поднесенного огня, относятся уголь и нефть. Их запасы на земном шаре крайне малы. При современном расходовании нефти ее разведанные запасы придут к концу уже к началу следующего тысячелетия. Запасов каменного угля несколько больше. Количество угля на Земле выражают цифрой в десять тысяч миллиардов тонн. Килограмм угля при сгорании дает 7000 ккал тепла. Таким образом, общие энергетические запасы угля измеряются цифрой порядка 1020 ккал. Это в тысячи раз больше годового потребления энергии.

Запас энергии на тысячу лет надо признать очень малым. Тысяча лет – это много только по сравнению с длительностью человеческой жизни, а человеческая жизнь – ничтожное мгновение по сравнению с жизнью земного шара и с временем существования цивилизованного мира. Кроме того, потребление энергии на душу населения непрерывно растет. Поэтому, если бы запасы горючего сводились к нефти и углю, то положение дел на Земле с энергетическими запасами следовало бы считать катастрофическим.

В начале сороковых годов нашего века была доказана практическая возможность использования совершенно нового вида горючего, называемого ядерным. Мы располагаем значительными запасами ядерного горючего.

Здесь не место останавливаться на устройстве атома и его сердцевины – атомного ядра, на том, каким образом можно извлечь внутреннюю энергию из атомных ядер. Выделение ядерной энергии может быть осуществлено лишь в значительных масштабах на так называемых атомных электростанциях. Ядерная энергия выделяется в виде тепла, которое используется совершенно так же, как на электростанциях, работающих на каменном угле.

В настоящее время мы можем выделять энергию в промышленных количествах из двух элементов – урана и тория. Особенность ядерного горючего, являющаяся его основным достоинством, – это исключительная концентрированность энергии. Килограмм ядерного горючего отдает энергии в 2,5 миллиона раз больше, чем килограмм каменного угля. Поэтому, несмотря на относительно малую распространенность этих элементов, их запасы на земном шаре в энергетическом выражении довольно значительны. Примерные расчеты показывают, что запасы ядерного горючего существенно больше, чем запасы каменного угля. Однако приобщение к топливу урана и тория не решает принципиальную задачу освобождения человечества от энергетического голода – запасы минералов в земной коре ограничены.

Но уже сейчас можно указать поистине безграничный источник энергии. Речь идет о так называемых термоядерных реакциях. Они возможны лишь при сверхвысоких температурах порядка двадцати миллионов градусов. Эта температура пока что достигается лишь при атомных взрывах.

Сейчас перед исследователями стоит задача получения высоких температур не взрывным путем, и первые попытки достигнуть температуры в миллион градусов увенчались успехом.

Если физики сумеют работать с необходимыми высокими температурами в десятки миллионов градусов, получаемыми не взрывным путем, то управляемая реакция слияния атомных ядер водорода (она и носит название термоядерной) станет возможной. При этой реакции будет выделяться огромная энергия на килограмм горючего. Для того чтобы обеспечить сейчас человечество энергией на один год, достаточно выделить термоядерную энергию путем переработки десятка миллионов тонн воды.

В мировом океане запасено столько термоядерной энергии, что ее хватит для покрытия всех энергетических потребностей человечества в течение времени, превышающего возраст солнечной системы. Вот уж действительно безграничный источник энергии.

Следующая глава >

fis.wikireading.ru

Внутренние и внешние источники энергии Земли

Как внутри Земли, так и на ее поверхности происходят процессы, которые определяют формирование рельефа.

Каждому региону на Земле, на суше и на дне океана свойствен собственный тектонический режим, определяющей развитие рельефа. Эндогенный фактор образования рельефа включает тектонические, сейсмические и вулканические явления. До глубины 400 - 700 км прослеживаются особенно крупные разрывные нарушения, гипоцентры землетрясений, магматические очаги, с которыми связаны вулканические процессы. На этих глубинах происходят переходы вещества из твердого состояния в пластичное и даже жидкое (и обратно), разогревание и плавление его в результате радиоактивного распада, гравитационная и химическая дифференциация веществ.

Эндогенные процессы (от греч. endon - внутри и genes - рожденный) бывают как активными и длительными, например, в вулканических поясах, так и импульсивными. Внешние процессы, называемые экзогенные (от греч. ехо - вне и genes - рожденный), протекают на поверхности литосферы благодаря воздействию солнечной энергии, силе тяжести, физико-химическим изменениям горных пород и осадков, перемещению веществ из недр Земли в вертикальном и горизонтальном направлениях. Накопление осадков на дне морей и океанов, перемещение рыхлого материала на суше - также результат экзогенных процессов.

Основной источник энергии внешних сил планеты - это солнечная энергия. Из нее на экзогенные процессы расходуется около 60%, остальная часть возвращается во внеземное пространство. Солнечная энергия поглощается Мировым океаном. Это определяет высокую степень подвижности его вод: течений, вихрей и др. Но и суше достается значительная доля энергии, которая не только расходуется, но и идет на накопление, уплотнение и преобразование осадков и минералов. Немалая часть ее сохраняется в биосфере Земли. Помимо солнечной энергии на создание форм рельефа расходуется энергия падающих на Землю космических тел - метеоритов. Нетрудно заметить, что у эндогенных и экзогенных процессов имеются общие источники энергии: солнечное излучение, вращение планеты и физико-химические превращения вещества. Однако экзогенные процессы теснее связаны с географическими и, прежде всего, с ландшафтно-климатическими условиями. Для каждого ландшафтного пояса характерны свои действующие экзогенные процессы. Установлено, что главным фактором в распределении и свойствах экзогенных процессов является непосредственное соотношение тепла и влаги. Это энергетическая основа многих географических процессов на поверхности Земли, в том числе процессов образования рельефа. Распределение тепла и влаги на поверхности планеты никогда не было постоянным. Это зависело от величины угла наклона оси вращения планеты, которая менялась от 15 - 20° до 30 - 40°. Сейчас этот угол составляет около 27°.

На проблему происхождения и развития рельефа суши и дна морей ученые смотрят по-разному. Одни полагают, что океаны возникли одновременно с появлением планеты. Однако они постоянно сокращают свою площадь, поскольку идет рост континентов. Другие считают, что океаны возникли при разрыве и дрейфе первичных материков, когда пространство между ними стало заполняться водой. Третьи предполагают, что океаны возникли на месте существовавших некогда континентов в результате «океанизации» Земли.

geographyofrussia.com

Источники энергии

В основном энергию, используемую в быту и промышленности, мы добываем на поверхности Земли или в ее недрах. Например, во многих слаборазвитых странах жгут древесину для отопления и освещения жилищ, тогда как в развитых странах для получения электроэнергии сжигают различные ископаемые источники топлива - уголь, нефть и газ. Ископаемые виды топлива представляют собой не возобновляемые источники энергии. Их запасы восстановить невозможно. Ученые сейчас изучают возможности использования неисчерпаемых источников энергии.

Ископаемые виды топлива

Уголь, нефть и газ - невозобновляемые источники энергии, которые сформировались из остатков древних растений и животных, обитавших на Земле миллионы лет назад (подробнее в статье «Древнейшие формы жизни«). Эти виды топлива добываются из недр и сжигаются для получения электроэнергии. Однако использование ископаемых источников топлива создает серьезные проблемы. При современных темпах потребления известные запасы нефти и газа будут исчерпаны уже в ближайшие 50 лет. Запасов угля хватит лет на 250. При сжигании этих видов топлива образуются газы, под воздействием которых возникает парниковый эффект и выпадают кислотные дожди.

Возобновляемые источники энергии

По мере роста численности населения (см. статью «Население Земли«) людям требуется все больше энергии, и многие страны переходят к использованию возобновляемых источников энергии - солнца, ветра и воды. Идея их применения пользуется широкой популярностью, так как это - экологически чистые источники, использование которых не наносит вреда окружающей среде.

Гидроэлектростанции

Энергию воды используют на протяжении многих веков. Вода вращала водяные колеса, использовавшиеся для разных целей. В наши дни построены огромные плотины и водохранилища, и вода применяется для выработки электроэнергии. Течение реки вращает колеса турбин, превращая энергию воды в электроэнергию. Турбина связана с генератором, который вырабатывает электроэнергию.

Солнечная энергия

Земля получает громадное количество солнечной энергии. Современная техника позволяет ученым разрабатывать новые методы использования солнечной энергии. Крупнейшая в мире солнечная электростанция построена в пустыне Калифорнии. Она полностью обеспечивает потребности 2000 домов в энергии. Зеркала отражают солнечные лучи, направляя их в центральный бойлер с водой. Вода в нем кипит и превращается в пар, который вращает турбину, связанную с электрогенератором.

Энергия ветра

Энергия ветра используется человеком уже не первое тысячелетие. Ветер надувал паруса и вращал мельницы. Для использования энергии ветра создавались самые разнообразные устройства, предназначенные для выработки электроэнергии и для других целей. Ветер вращает лопасти ветряка, приводящие в действие вал турбины, связанной с электрогенератором.

Атомная энергия

Атомная энергия - тепловая энергия, выделяющаяся при распаде мельчайших частиц материи - атомов. Основным топливом для получения атомной энергии является уран - элемент, содержащийся в земной коре. Многие люди считают атомную энергию энергией будущего, но ее применение на практике создает ряд серьезных проблем. Атомные электростанции не выделяют ядовитых газов, но могут создавать немало трудностей, так как это топливо радиоактивно. Оно излучает радиацию, убивающую все живые организмы. Если радиация попадает в почву или в атмосферу, это влечет за собой катастрофические последствия.

Аварии ядерных реакторов и выбросы радиоактивных веществ в атмосферу представляют собой большую опасность. Авария на ядерной электростанции в Чернобыле (Украина), случившаяся в 1986 г., повлекла за собой гибель многих людей и заражение огромной территории. Радиоактивные отходы угрожают всему живому в течение тысячелетий. Обычно их хоронят ни дне морей, но нередки и случаи захоронения отходов глубоко под землей.

Другие возобновляемые источники энергии

В будущем люди смогут использовать множество различных естественных источников энергии. Например, в вулканических районах разрабатывается технология использования геотермальной энергии (тепла земных недр). Другим источником энергии является биогаз, образующийся при гниении отходов. Он может применяться для отопления жилищ и нагревания воды. Уже созданы приливные электростанции. Поперек устьев рек (эстуариев) нередко возводят плотины. Особые турбины, приводимые в действие приливами и отливами, вырабатывают электроэнергию.

Как сделать ротор Савония:

Ротор Савония представляет собой механизм, применяемый крестьянами в Азии и Африке для подачи воды при ирригации. Чтобы самим сделать ротор, вам потребуются несколько чертежных кнопок, большая пластмассовая бутылка, крышка, две прокладки, стержень длиной 1 м и толщиной 5 мм и два металлических кольца.

Как это сделать:

1. Чтобы сделать лопасти, обрежьте бутылку сверху и разрежьте ее пополам вдоль.

2. С помощью чертежных кнопок прикрепите половинки бутылки к крышке. Соблюдайте осторожность при обращении с кнопками.

3. Приклейте прокладки к крышке и воткните в нее стержень.

4. Приверните кольца к деревянному основанию и поставьте ваш ротор на ветру. Вставьте стержень в кольца и проверьте вращение ротора. Выбрав оптимальное положение половины бутылки, приклейте их к крышке прочным водоотталкивающим клеем.

www.polnaja-jenciklopedija.ru

Сравните Землю с другими планетами Солнечной системы. Что является основным источником энергии для процессов,

происходящихна поверхности Земли?

  • Следить
  • Отметить нарушение!

Ответы и объяснения

+ − × • ÷ ± = ≡ ≠ ~ ≈ ≃ < ≤ ≤ > ≥ ∝ ∑ ∞ √ { } ⟨ ⟩ ¼ ½ ¾ ƒ ′ ″ ∂ ∫ ∬ Δ ∇

Геометрия

° ∠ ∡ ∟ ⦜ ⊿ ○ △ □ ▱ ◊ ∥ ∦ ⊥ ≅

¬ ∧ ∨ ∀ ∃ ◻ ◊ ⊢ ⊨ ∴

Множества

∅ ∈ ∉ ⊆ ⊈ ⊂ ⊄ ⊇ ⊉ ⊃ ⊅ ∩ ∪ ∖ ⊖ ⊕ ⊗ ⊙

Верхние и нижние индексы

Нижние индексы

₁ ₂ ₃ ₄ ₅ ₆ ₇ ₈ ₉ ₀ ₊ ₋ ₍ ₎ ₐ ₓ

Верхние индексы

¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁰ ⁺ ⁻ ⁽ ⁾ ᵃ ᵇ ⁿ ˣ °

Греческий алфавит

Строчные

α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ τ υ φ χ ψ ω

Прописные

Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω

↑ ↓ ↕ → ← ↔ ⇑ ⇓ ⇕ ⇒ ⇐ ⇔

Европейские символы

À Â Ç É È Î Ï Ô Û Ÿ Œ Æ ß Ä Ö Ü à â ç é è ê î ï ô û ù ÿ œ æ ä ö ü

Другие символы

⊤ ⊣ ⊥ ⊢ € £ ¥ ¢ ® ™ ‰

koreniz.ru

Глава 3. Солнце - главный источник энергии для поверхности Земли. Энергия и жизнь

Глава 3. Солнце - главный источник энергии для поверхности Земли

О солнце, ты живот и красота природы,

Источник вечности и образ божества!

Тобой живет земля, жив воздух, живы воды,

Душа времен и вещества!

А. П. Сумароков

Из большого числа возможных источников энергии, имеющихся у нашей планеты, первое место, несомненно, следует отдать солнечному потоку, который поддерживает необходимые температурные условия Земли (чтобы мы не испарились, перегревшись, или не замерзли, переохладившись).

Культ Солнца был развит у большинства народов, населяющих Землю, и недаром поток солнечной энергии составляет основу всех потоков энергии на нашей планете (рис. 3).

К внешней границе тропосферы подводится поток солнечной радиации примерно 1000 ккал/(см2·год) (или около 2 ккал/(см2·мин)). Из-за шарообразности Земли на единицу поверхности внешней границы тропосферы в среднем поступает четвертая часть - примерно 250 ккал/(см2· год). Треть этого потока отражается, и, следовательно, Земля поглощает 167 ккал/(см2· год). Из них 59 ккал/(см2· год) поглощает атмосфера, и на долю поглощения земной поверхностью приходится 108 ккал/(см2·год). Эта энергия «перерабатывается» различными способами. В виде длинноволнового инфракрасного излучения с поверхности Земли уходит 36 ккал/(см2· год).

Рис. 3. Укрупненная схема энергетического баланса Земли

(составляющие энергетического баланса, ккал/(см2 ·год)) [Будыко, 1984].

Благодаря парниковому эффекту поверхность Земли получает около 72 ккал/(см2·год) радиационной энергии, часть которой - 60 ккал/ (см2·год) - идет на испарение воды (нижний кружок на рис. 3), а часть - 12 ккал/ (см2·год) - возвращается в атмосферу через турбулентные потоки воздуха.

Основной передатчик тепла между космосом и Землей - атмосфера - получает от Земли «свои» 60 ккал / (см2·год) за счет конденсации водяных паров (верхний кружок на рис. 3), упомянутые 12 ккал/(см2·год)- за счет турбулизации и непосредственно от радиации Солнца - 59 ккал/(см2 · год). Итог: приход равен 131 ккал/ (см2·год). И соответственно расход тепла через эффективное излучение - той же величине -131 ед. Вместе с результирующими 36 ккал/(см2·год) длинноволнового излучения от земной подстилки мы и получим расход в целом - 167 ккал/ (см2·год), в точности равный приходу энергии с потоком солнечной радиации.

Таким образом, на нашей планете работает «система жизнеобеспечения» с определенным интервалом температур. Среднегодовая температура составляет 14,25°С, при этом в Северном полушарии средняя температура 15,2°С, а в Южном - только 13,3°С из-за высокой отражательной способности ледового панциря Антарктиды.

Из 72 ккал, поглощаемых каждым квадратным сантиметром земной поверхности в год, океан «забирает» почти вдвое больше, чем суша, - 90 и 50 ккал соответственно. Это объясняется большой теплоемкостью воды и ее подвижностью. Океаносфера является мощным аккумулятором солнечного тепла, она накапливает в 21 раз больше того количества тепла, которое за год поступает от Солнца ко всей поверхности Земли (7,6 · 1023 ккал по сравнению с потоком в 3,65 · 1020 ккал/год). Поэтому ее взаимодействием с атмосферой определяется погода на земном шаре. Тепло, поглощаемое в тропиках, переносится течениями в высокие широты, смягчая климат умеренных и полярных областей. Один Гольфстрим несет в 22 раза больше тепла, чем все реки суши.

В целом гидросфера работает под влиянием накачки солнечной энергии как гигантская тепловая машина. Можно даже оценить ее коэффициент полезного действия. «Чистая» энергия движения, перемещения воздушных и водных масс, т. е. та часть, которая может совершать нужную нам работу, оказывается совсем небольшой: для атмосферы (со средней скоростью ветра, несколько превышающей 10 м/с у поверхности Земли)- всего 1,6% от поглощаемого солнечного тепла, а для океаносферы (со средней скоростью течения во всей толще вод, равной 3,2 см/с) - еще на пару порядков ниже. Конечно, одна из наиболее серьезных энергетических затрат - это затрата энергии на физический круговорот воды, прежде всего на испарение. Ее тоже можно оценить по уже приведенным данным. Около 55% - таков расход энергии, дошедшей до земной поверхности, на испарение.

В атмо- и гидросфере сложное переплетение циклов, различающихся по пространству и времени существования, определяет и мгновенное состояние - погоду в любой точке Земли и климат в каждой зоне. Климат есть результат усреднения прошлых погод каждого дня в каждой точке. Не затрагивая очень спорного, но злободневного вопроса о прогнозировании погоды, подчеркнем только, что само понятие о климате было введено еще учеными Древней Греции. Слово это греческого происхождения (klima) и означает «наклон». То есть еще в то время греки хорошо понимали, что климат местности зависит от среднего наклона солнечных лучей к поверхности Земли. Молодцы, древние греки! Представление о первоисточнике движения у них было самое верное.

Следующая глава >

bio.wikireading.ru