Обобщенный закон гука устанавливает связь между. Обобщенный закон гука

Рассмотренные выше напряженное и деформированное состояния являются составляющими единой физической сущности - напряженно-деформированного состояния в точке тела.

При решении конкретных задач необходимо принимать в расчет физические соотношения, существующие между напряжениями и деформациями. В статически определимых задачах существует возможность найти напряжения без физических соотношений, используя только уравнения равновесия. В статически неопределимых задачах такая возможность отсутствует.

Зависимость между напряжениями и деформациями, как правило, устанавливается с помощью экспериментов, и ее сложность зависит от свойств материала. Для широко применяемых на практике изотропных материалов используются линейные зависимости, с помощью которых удается проводить расчеты при изменении напряжений в довольно широких пределах.

Проанализируем зависимость между компонентами напряженного и деформированного состояний в точке тела, используя принцип независимости действия сил. С этой целью вырежем из твердого тела элементарный параллелепипед (рис. 10.10).

Рис. 10.10.

Рассмотрим случай действия на элемент только касательного напряжения т гу/ (рис. 10.10, а). В этом случае прямой угол изменяется только в плоскостях, параллельных плоскости ху. Аналогично можем рассмотреть угловые перемещения, которые возникают от действия касательных напряжений x yz и x zv . В предположении о том, что материал изотропен и между касательными напряжениями и угловыми перемещениями существует линейная зависимость, приходим к соотношениям

где G - модуль упругости второго рода.

Проанализируем перемещения, вызываемые действием нормальных напряжений в направлении оси Ох (рис. 10.10, б). Обусловленная этим напряжением деформация в направлении оси Ох равна ct v /?, а в направлении двух других осей перемещения определяются с помощью коэффициента Пуассона v по формуле -vg v /?. Аналогично определяются деформации в направлении оси Ох от а у и а 2 . Окончательно суммированием деформаций по всем направлениям получим

При изменении температуры тела к правым частям соотношений (10.38) следует добавить величины аAt, где At - изменение температуры тела; а - коэффициент линейного температурного расширения изотропного материала. Что касается формул (10.37), то они останутся без изменений.

Соотношения (10.37) и (10.38) носят название обобщенного закона Гука для случая линейно-упругого изотропного материала.

При проведении расчетов полезными оказываются и обратные соотношения:


Отметим, что при выводе физических соотношений мы негласно предполагали, что направления главных напряжений и главных деформаций совпадают друг с другом. Данное предположение носит название условия соосности тензоров напряжений и деформаций.

В случае анизотропных материалов, свойства которых в различных направлениях отличаются, условие соосности не выполняется. Для упругих анизотропных материалов обобщенный закон Гука записывается в следующем виде:


Здесь a t - - постоянные упругости, которые выражают свойства материала. Введем обозначения


Тогда соотношения (10.40) можем представить в векторно-матричном виде:

где {а} и {е} - векторы, соответственно, напряжений и деформаций ; [А] матрица упругих свойств материала.

Для изотропного линейно-упругого материала из трех постоянных Е, G и v, как мы установили ранее, независимыми являются только две из них. Матрица упругих свойств такого материала выглядит следующим образом:


При записи обобщенного закона Гука для анизотропного материала (10.40) использовано 36 констант. Установим, сколько из этих величин являются независимыми. Рассмотрим два напряженных состояния (рис. 10.11).


Рис. 10.11.

Удлинение элемента в направлении у , обусловленное напряженным состоянием первого направления (рис. 10.11, а), равно dA vl/ = a 2 p x dy. Аналогично определяется удлинение элемента в первом направлении, обусловленное вторым напряженным состоянием (рис. 10.11, б): dA f/x = a x p y dx.

Согласно принципу взаимности работ

откуда следует, что я |2 = а 21 .

Аналогичным образом можно получить еще 14 равенств a:j = a jt , i,j = 1, 2,..., 6, i * j. Матрица податливости материала А является симметричной. Таким образом, для анизотропных материалов из 36 характеристик независимыми являются только 21.

При анализе композитных материалов приходится иметь дело с частными случаями анизотропии. Распространенным является случай ортотроп- ного материала, характеризуемый симметрией относительно трех взаимно перпендикулярных осей. Примером такой анизотропии является древесина. Упругие свойства ортотропной среды описываются девятью независимыми постоянными:


где по свойству симметрии

Упругие постоянные композитных материалов в большинстве случаев определяются экспериментально.

  • Запись напряжений и деформаций в виде векторных величин носит формальный характер и вводится для удобства.

Министерство образования АР Крым

Таврический Национальный Университет им. Вернадского

Исследование физического закона

ЗАКОН ГУКА

Выполнил: студент 1 курса

физического факультета гр. Ф-111

Потапов Евгений

Симферополь-2010

План:

    Связь между какими явлениями или величинами выражает закон.

    Формулировка закона

    Математическое выражение закона.

    Каким образом был открыт закон: на основе опытных данных или теоретически.

    Опытные факты на основе которого был сформулирован закон.

    Опыты, подтверждающие справедливость закона, сформулированного на основе теории.

    Примеры использования закона и учета действия закона на практике.

    Литература.

Связь между какими явлениями или величинами выражает закон:

Закон Гука связывает такие явления, как напряжение и деформацию твердого тела, модуль силы упругости и удлинение. Модуль силы упругости, возникающей при деформации тела, пропорционален его удлинению. Удлинением называется характеристика деформативности материала, оцениваемая по увеличению длины образца из этого материала при растяжении. Си́ла упру́гости - сила, возникающая при деформации тела и противодействующая этой деформации. Напряжение - это мера внутренних сил, возникающих в деформируемом теле под влиянием внешних воздействий. Деформа́ция - изменение взаимного положения частиц тела, связанное с их перемещением друг относительно друга. Эти понятия связаны так называемым коэффициентом жесткости. Он зависит от упругих свойств материала и размеров тела.

Формулировка закона:

Зако́н Гу́ка - уравнение теории упругости, связывающее напряжение и деформацию упругой среды.

Формулировка закона - сила упругости прямо пропорциональна деформации.

Математическое выражение закона:

Для тонкого растяжимого стержня закон Гука имеет вид:

Здесь F сила натяжения стержня, Δl - его удлинение(сжатие), а k называется коэффициентом упругости (или жёсткостью). Минус в уравнении указывает на то, что сила натяжения всегда направлена в сторону, противоположную деформации.

Если ввести относительное удлинение

и нормальное напряжение в поперечном сечении

т о закон Гука запишется так

В такой форме он справедлив для любых малых объёмов вещества.

В общем случае напряжения и деформации являются тензорами второго ранга в трёхмерном пространстве (имеют по 9 компонент). Связывающий их тензор упругих постоянных является тензором четвёртого ранга C ijkl и содержит 81 коэффициент. Вследствие симметрии тензора C ijkl , а также тензоров напряжений и деформаций, независимыми являются только 21 постоянная. Закон Гука выглядит следующим образом:

где σ ij - тензор напряжений, -тензор деформаций. Для изотропного материала тензор C ijkl содержит только два независимых коэффициента.

Каким образом был открыт закон: на основе опытных данных или теоретически:

Закон был открыт в 1660 году английским учёным Робертом Гуком (Хуком) на основе наблюдений и экспериментов. Открытие, как утверждал Гук в своём сочинении «De potentia restitutiva», опубликованном в 1678, сделано им за 18 лет до этого времени, а в 1676 было помещено в другой его книге под видом анаграммы «ceiiinosssttuv», означающей «Ut tensio sic vis». По объяснению автора, вышесказанный закон пропорциональности применяется не только к металлам, но и к дереву, камням, рогу, костям, стеклу, шёлку, волосу и проч.

Опытные факты на основе которых был сформулирован закон:

История об этом умалчивает..

Опыты, подтверждающие справедливость закона, сформулированного на основе теории:

Закон сформулирован на основе опытных данных. Действительно, при растягивании тела (проволоки) с определенным коэффициентом жесткости k на расстояние Δl, то их произведение будет равно по модулю силе, растягивающей тело (проволоку). Такое соотношение будет выполняться, однако, не для всех деформаций, а для небольших. При больших деформациях закон Гука перестает действовать, тело разрушается.

Примеры использования закона и учета действия закона на практике:

Как следует из закона Гука, по удлинению пружины можно судить о силе, действующей на нее. Этот факт используется для измерения сил с помощью динамометра – пружины с линейной шкалой, проградуированной на разные значения сил.

Литература.

1. Интернет-ресурсы: - сайт Википедия (http://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%93%D1%83%D0%BA%D0%B0).

2. учебник по физике Перышкин А.В. 9 класс

3. учебник по физике В.А. Касьянов 10 класс

4. лекции по механике Рябушкин Д.С.

Коэффициент упругости

Коэффицие́нт упру́гости (иногда называют коэффициентом Гука, коэффициентом жёсткости или жёсткостью пружины) - коэффициент, связывающий в законе Гука удлинение упругого тела и возникающую вследствие этого удлинения силу упругости. Применяется в механике твердого тела в разделе упругости. Обозначается буквой k , иногда D или c . Имеет размерность Н/м или кг/с2 (в СИ), дин/см или г/с2 (в СГС).

Коэффициент упругости численно равен силе, которую надо приложить к пружине, чтобы её длина изменилась на единицу расстояния.

Определение и свойства

Коэффициент упругости по определению равен силе упругости, делённой на изменение длины пружины: k = F e / Δ l . {\displaystyle k=F_{\mathrm {e} }/\Delta l.} Коэффициент упругости зависит как от свойств материала, так и от размеров упругого тела. Так, для упругого стержня можно выделить зависимость от размеров стержня (площади поперечного сечения S {\displaystyle S} и длины L {\displaystyle L}), записав коэффициент упругости как k = E ⋅ S / L . {\displaystyle k=E\cdot S/L.} Величина E {\displaystyle E} называется модулем Юнга и, в отличие от коэффициента упругости, зависит только от свойств материала стержня.

Жёсткость деформируемых тел при их соединении

Параллельное соединение пружин. Последовательное соединение пружин.

При соединении нескольких упруго деформируемых тел (далее для краткости - пружин) общая жёсткость системы будет меняться. При параллельном соединении жёсткость увеличивается, при последовательном - уменьшается.

Параллельное соединение

При параллельном соединении n {\displaystyle n} пружин с жёсткостями, равными k 1 , k 2 , k 3 , . . . , k n , {\displaystyle k_{1},k_{2},k_{3},...,k_{n},} жёсткость системы равна сумме жёсткостей, то есть k = k 1 + k 2 + k 3 + . . . + k n . {\displaystyle k=k_{1}+k_{2}+k_{3}+...+k_{n}.}

Доказательство

В параллельном соединении имеется n {\displaystyle n} пружин с жёсткостями k 1 , k 2 , . . . , k n . {\displaystyle k_{1},k_{2},...,k_{n}.} Из III закона Ньютона, F = F 1 + F 2 + . . . + F n . {\displaystyle F=F_{1}+F_{2}+...+F_{n}.} (К ним прикладывается сила F {\displaystyle F} . При этом к пружине 1 прикладывается сила F 1 , {\displaystyle F_{1},} к пружине 2 сила F 2 , {\displaystyle F_{2},} … , к пружине n {\displaystyle n} сила F n . {\displaystyle F_{n}.})

Теперь из закона Гука (F = − k x {\displaystyle F=-kx} , где x - удлинение) выведем: F = k x ; F 1 = k 1 x ; F 2 = k 2 x ; . . . ; F n = k n x . {\displaystyle F=kx;F_{1}=k_{1}x;F_{2}=k_{2}x;...;F_{n}=k_{n}x.} Подставим эти выражения в равенство (1): k x = k 1 x + k 2 x + . . . + k n x ; {\displaystyle kx=k_{1}x+k_{2}x+...+k_{n}x;} сократив на x , {\displaystyle x,} получим: k = k 1 + k 2 + . . . + k n , {\displaystyle k=k_{1}+k_{2}+...+k_{n},} что и требовалось доказать.

Последовательное соединение

При последовательном соединении n {\displaystyle n} пружин с жёсткостями, равными k 1 , k 2 , k 3 , . . . , k n , {\displaystyle k_{1},k_{2},k_{3},...,k_{n},} общая жёсткость определяется из уравнения: 1 / k = (1 / k 1 + 1 / k 2 + 1 / k 3 + . . . + 1 / k n) . {\displaystyle 1/k=(1/k_{1}+1/k_{2}+1/k_{3}+...+1/k_{n}).}

Доказательство

В последовательном соединении имеется n {\displaystyle n} пружин с жёсткостями k 1 , k 2 , . . . , k n . {\displaystyle k_{1},k_{2},...,k_{n}.} Из закона Гука (F = − k l {\displaystyle F=-kl} , где l - удлинение) следует, что F = k ⋅ l . {\displaystyle F=k\cdot l.} Сумма удлинений каждой пружины равна общему удлинению всего соединения l 1 + l 2 + . . . + l n = l . {\displaystyle l_{1}+l_{2}+...+l_{n}=l.}

На каждую пружину действует одна и та же сила F . {\displaystyle F.} Согласно закону Гука, F = l 1 ⋅ k 1 = l 2 ⋅ k 2 = . . . = l n ⋅ k n . {\displaystyle F=l_{1}\cdot k_{1}=l_{2}\cdot k_{2}=...=l_{n}\cdot k_{n}.} Из предыдущих выражений выведем: l = F / k , l 1 = F / k 1 , l 2 = F / k 2 , . . . , l n = F / k n . {\displaystyle l=F/k,\quad l_{1}=F/k_{1},\quad l_{2}=F/k_{2},\quad ...,\quad l_{n}=F/k_{n}.} Подставив эти выражения в (2) и разделив на F , {\displaystyle F,} получаем 1 / k = 1 / k 1 + 1 / k 2 + . . . + 1 / k n , {\displaystyle 1/k=1/k_{1}+1/k_{2}+...+1/k_{n},} что и требовалось доказать.

Жёсткость некоторых деформируемых тел

Стержень постоянного сечения

Однородный стержень постоянного сечения, упруго деформируемый вдоль оси, имеет коэффициент жёсткости

K = E S L 0 , {\displaystyle k={\frac {E\,S}{L_{0}}},} Е - модуль Юнга, зависящий только от материала, из которого выполнен стержень; S - площадь поперечного сечения; L 0 - длина стержня.

Цилиндрическая витая пружина

Витая цилиндрическая пружина сжатия.

Витая цилиндрическая пружина сжатия или растяжения, намотанная из цилиндрической проволоки и упруго деформируемая вдоль оси, имеет коэффициент жёсткости

K = G ⋅ d D 4 8 ⋅ d F 3 ⋅ n , {\displaystyle k={\frac {G\cdot d_{\mathrm {D} }^{4}}{8\cdot d_{\mathrm {F} }^{3}\cdot n}},} d - диаметр проволоки; d F - диаметр намотки (измеряемый от оси проволоки); n - число витков; G - модуль сдвига (для обычной стали G ≈ 80 ГПа, для пружинной стали G ≈ 78.5 ГПа, для меди ~ 45 ГПа).

Источники и примечания

  1. Упругая деформация (рус.). Архивировано 30 июня 2012 года.
  2. Dieter Meschede, Christian Gerthsen. Physik. - Springer, 2004. - P. 181 ..
  3. Bruno Assmann. Technische Mechanik: Kinematik und Kinetik. - Oldenbourg, 2004. - P. 11 ..
  4. Динамика, Сила упругости (рус.). Архивировано 30 июня 2012 года.
  5. Механические свойства тел (рус.). Архивировано 30 июня 2012 года.

10.Закон Гука при растяжении-сжатии. Модуль упругости (модуль Юнга).

При осевом растяжении или сжатии до предела пропорциональности σ pr справедлив закон Гука, т.е. закон о прямо пропорциональной зависимости между нормальными напряжениями и продольными относительными деформациями :


(3.10)

или

(3.11)

Здесь Е – коэффициент пропорциональности в законе Гука имеет размерность напряжения и называется модулем упругости первого рода , характеризующим упругие свойства материала, или модулем Юнга .

Относительной продольной деформацией называется отношение абсолютной продольной деформации участка

стержня к длине этого участка до деформации:


(3.12)

Относительная поперечная деформация будет равна: " = = b/b, где b = b 1 – b.

Отношение относительной поперечной деформации " к относительной продольной деформации , взятое по модулю, есть для каждого материала величина постоянная и называется коэффициентом Пуассона:


Определение абсолютной деформации участка бруса

В формулу (3.11) вместо и подставим выражения (3.1) и (3.12):



Отсюда получим формулу для определения абсолютного удлинения (или укорочения) участка стержня длиной :


(3.13)

В формуле (3.13) произведение ЕА называется жесткостью бруса при растяжении или сжатии, которая измеряется в кН, или в МН.

По этой формуле определяется абсолютная деформация , если на участке продольная сила постоянна. В случае, когда на участке продольная сила переменна, она определяется по формуле:


(3.14)

где N(х) – функция продольной силы по длине участка.

11.Коэффициент поперечной деформации (коэффициент Пуассона

12.Определение перемещений при растяжении-сжатии. Закон Гука для участка бруса. Определение перемещений сечений бруса

Определим горизонтальное перемещение точки а оси бруса (рис. 3.5) – u a: оно равно абсолютной деформации части бруса а d , заключенной между заделкой и сечением, проведенным через точку, т.е.

В свою очередь удлинение участка а d состоит из удлинений отдельных грузовых участков 1, 2 и 3:

Продольные силы на рассматриваемых участках:




Следовательно,






Тогда

Аналогично можно определить перемещение любого сечения бруса и сформулировать следующее правило:

перемещение любого сечения j стержня при растяжении–сжатии определяется как сумма абсолютных деформаций n грузовых участков, заключенных между рассматриваемым и неподвижным (закрепленным) сечениями, т.е.


(3.16)

Условие жесткости бруса запишется в следующем виде:


, (3.17)

где

– наибольшее значение перемещения сечения, взятое по модулю из эпюры перемещений;u – допускаемое значение перемещения сечения для данной конструкции или ее элемента, устанавливаемое в нормах.

13.Определение механических характеристик материалов. Испытание на растяжение. Испытание на сжатие.

Для количественной оценки основных свойств материалов, как


Правило, экспериментально определяют диаграмму рас­тяжения в координатах  и  (рис. 2.9), На диаграмме от­мечены характерные точки. Дадим их определение.

Наибольшее напряже­ние, до которого материал следует закону Гука, назы­вается пределом про­порциональности П . В пределах закона Гука тангенс угла наклона прямой  = f () к оси  определяется величиной Е .

Упругие свойства материала сохраняются до напряжения  У , называемого пределом упругости . Под пределом упругости  У понимается такое наибольшее напряжение, до которого матери­ал не получает остаточных деформаций, т.е. после полной разгруз­ки последняя точка диаграммы совпадает с начальной точкой 0.

Величина  Т называется пределом текучести материала. Под пределом текучести понимается то напряжение, при котором происходит рост деформаций без заметного увеличения нагрузки. Если необходимо различать предел текучести при растяжении и сжатии  Т соответственно заменяется на  ТР и  ТС . При напряже­ниях больших  Т в теле конструкции развиваются пластические деформации  П , которые не исчезают при снятии нагрузки.

Отношение максимальной силы, которую способен выдержать образец, к его начальной площади поперечного сечения носит на­звание предела прочности, или временного сопротивления, и обоз­начается через,  ВР (при сжатии  ВС ).

При выполнении практических расчетов реальную диаграмму (рис. 2.9) упрощают, и с этой целью применяются различные ап­проксимирующие диаграммы. Для решения задач с учетом упру­го пластических свойств материалов конструкций чаще всего применяется диаграмма Прандтля . По этой диаграмме на­пряжение изменяется от нуля до предела текучести по закону Гука  = Е , а далее при росте ,  =  Т (рис. 2.10).

Способность материалов получать остаточные деформации но­сит название пластичности . На рис. 2.9 была представлена ха­рактерная диаграмма для пластических материалов.


Рис. 2.10 Рис. 2.11

Противоположным свойству пластичности является свойство хрупкости , т.е. способность материала разрушаться без образова­ния заметных остаточных деформаций. Материал, обладающий этим свойством, называется хрупким . К хрупким материалам относятся чугун, высокоуглеродистая сталь, стекло, кирпич, бетон, природные камни. Характерная диаграмма деформации хрупких материалов изображена на рис. 2.11.

1. Что называется деформацией тела? Как формулируется закон Гука?

Вахит шавалиев

Деформациями называются любые изменения формы, размеров и объема тела. Деформация определяет конечный результат движения частей тела друг относительно друга.
Упругими деформациями называются деформации, полностью исчезающие после устранения внешних сил.
Пластическими деформациями называются деформации, полностью или частично сохраняющиеся после прекращения действии внешних сил.
Силы упругости – это силы, возникающие в теле при его упругой деформации и направленные в сторону, противоположную смещению частиц при деформации.
Закон Гука
Небольшие и кратковременные деформации с достаточной степенью точности могут рассматриваться как упругие. Для таких деформаций справедлив закон Гука:
Сила упругости, возникающая при деформации тела прямо пропорциональна абсолютному удлинению тела и направлена в сторону, противоположную смещению частиц тела:
\
где F_x- проекция силы на ось x, k-жесткость тела, зависящая от размеров тела и материала, из которого оно изготовлено, единица жесткости в системе СИ Н/м.
http://ru.solverbook.com/spravochnik/mexanika/dinamika/deformacii-sily-uprugosti/

Варя гусева

Деформация - это изменение формы или объёма тела. Виды деформации - растяжение или сжатия (примеры: растянуть резинку или сжать, аккордеон) , изгиб (прогнулась доска под человеком, изогнули лист бумаги) , кручение (работа отвёрткой, выжимание белья руками) , сдвиг (при торможении автомобиля шины деформируются за счёт силы трения) .
Закон Гука: Сила упругости, возникающая в теле при его деформации, прямо пропорциональна величине этой деформации
или
Сила упругости, возникающая в теле при его деформации, прямо пропорциональна величине этой деформации.
Формула закона Гука: Fупр=kx

Закон Гука. Можно выразить формулой F= -kх или F= kх?

⚓ Выдр ☸

Зако́н Гу́ка - уравнение теории упругости, связывающее напряжение и деформацию упругой среды. Открыт в 1660 году английским учёным Робертом Гуком (Хуком) (англ. Robert Hooke). Поскольку закон Гука записывается для малых напряжений и деформаций, он имеет вид простой пропорциональности.

Для тонкого растяжимого стержня закон Гука имеет вид:
Здесь F сила натяжения стержня, Δl - его удлинение (сжатие) , а k называется коэффициентом упругости (или жёсткостью) . Минус в уравнении указывает на то, что сила натяжения всегда направлена в сторону, противоположную деформации.

Коэффициент упругости зависит как от свойств материала, так и от размеров стержня. Можно выделить зависимость от размеров стержня (площади поперечного сечения S и длины L) явно, записав коэффициент упругости как
Величина E называется модулем Юнга и зависит только от свойств тела.

Если ввести относительное удлинение
и нормальное напряжение в поперечном сечении
то закон Гука запишется как
В такой форме он справедлив для любых малых объёмов вещества.
[править]
Обобщённый закон Гука

В общем случае напряжения и деформации являются тензорами второго ранга в трёхмерном пространстве (имеют по 9 компонентов) . Связывающий их тензор упругих постоянных является тензором четвёртого ранга Cijkl и содержит 81 коэффициент. Вследствие симметрии тензора Cijkl, а также тензоров напряжений и деформаций, независимыми являются только 21 постоянная. Закон Гука выглядит следующим образом:
Для изотропного материала тензор Cijkl содержит только два независимых коэффициента.

Следует иметь в виду, что закон Гука выполняется только при малых деформациях. При превышении предела пропорциональности связь между напряжениями и деформациями становится нелинейной. Для многих сред закон Гука неприменим даже при малых деформациях.
[править]

короче, можно и так, и так, смотря что вы хотите указать в итоге: просто модуль силы Гука или еще и направление этой силы. Строго говоря, конечно, -kx, т. к. сила Гука направлена против положительного приращения координаты конца пружины.

Наблюдения показывают, что для большинства упругих тел, таких, как сталь, бронза, дерево и др., величины деформаций пропорциональны величинам действующих сил. Типичный пример, поясняющий это свойство, представляют пружинные весы, у которых удлинение пружины пропорционально действующей силе. Это видно из того, что шкала делений у таких весов равномерна. Как общее свойство упругих тел закон пропорциональности между силой и деформацией был впервые сформулирован Р. Гуком в 1660 г. и опубликован в 1678 г. в сочинении «De potentia restitutiva». В современной формулировке этого закона рассматривают не силы и перемещения точек их приложения, а напряжение и деформацию.

Так, для чистого растяжения полагают:

Здесь - относительное удлинение любого отрезка, взятого в направлении растяжения. Например, если ребра изображенной на рис. 11 призмы до приложения нагрузки были а, b и с, как показано на чертеже, а после деформации они будут соответственно , тогда .

Постоянная Е, имеющая размерность напряжения, называется модулем упругости, или модулем Юнга.

Растяжение элементов, параллельных действующим напряжениям о, сопровождается сокращением перпендикулярных элементов, то есть уменьшением поперечных размеров стержня (на чертеже - размеры ). Относительная поперечная деформация

будет величиной отрицательной. Оказывается, что продольная и поперечная деформации в упругом теле связаны постоянным отношением:

Безразмерная величина v, постоянная для каждого материала, называется коэффициентом поперечного сжатия или коэффициентом Пуассона. Сам Пуассон, исходивший из теоретических соображений, которые оказались впоследствии неверными, считал, что для всех материалов (1829). На самом деле значения этого коэффициента различны. Так, для стали

Заменяя в последней формуле выражением получим:

Закон Гука не является точным законом. Для стали отклонения от пропорциональности между незначительны, тогда как чугун или резнна явно этому закону не подчиняются. Для них причем может быть аппроксимирована линейной функцией разве лишь в самом грубом приближении.

В течение долгого времени сопротивление материалов занималось лишь материалами, подчиняющимися закону Гука, и приложение формул сопротивления материалов к другим телам можно было делать только с большой натяжкой. В настоящее время нелинейные законы упругости начинают изучаться и применяться к решению конкретных задач.

Как известно, физика изучает все законы природы: начиная от простейших и заканчивая наиболее общими принципами естествознания. Даже в тех областях, где, казалось бы, физика не способна разобраться, все равно она играет первоочередную роль, и каждый малейший закон, каждый принцип — ничто не ускользает от нее.

Вконтакте

Именно физика является основой основ, именно эта лежит в истоках всех наук.

Физика изучает взаимодействие всех тел, как парадоксально маленьких, так и невероятно больших. Современная физика активно изучает не просто маленькие, а гипотетические тела, и даже это проливает свет на суть мироздания.

Физика поделена на разделы, это упрощает не только саму науку и понимание ее, но и методологию изучения. Механика занимается движением тел и взаимодействием движущихся тел, термодинамика — тепловыми процессами, электродинамика — электрическими.

Почему деформацию должна изучать механика

Говоря о сжатиях или растяжениях, следует задать себе вопрос: какой раздел физики должен изучать этот процесс? При сильных искажениях может выделяться тепло, быть может, этими процессами должна заниматься термодинамика? Иногда при сжатии жидкостей, она начинает кипеть, а при сжатии газов — образуются жидкости? Так что же, деформацию должна познавать гидродинамика? Или молекулярно-кинетическая теория?

Всё зависит от силы деформации, от ее степени. Если деформируемая среда (материал, который сжимают или растягивают) позволяет, а сжатие невелико, есть смысл рассматривать этот процесс как движение одних точек тела относительно других.

А раз вопрос касается сугубо , значит, заниматься этим будет механика.

Закон Гука и условие его выполнения

В 1660 году известный английский ученый Роберт Гук открыл явление, при помощи которого можно механически описать процесс деформаций.

Для того чтобы понимать при каких условиях выполняется закон Гука, ограничимся двумя параметрами:

  • среда;
  • сила.

Есть такие среды (например, газы, жидкости, особо вязкие жидкости, близкие к твердым состояниям или, наоборот, очень текучие жидкости) для которых описать процесс механически никак не получится. И наоборот, существуют такие среды, в которых при достаточно больших силах механика перестает «срабатывать».

Важно! На вопрос: «При каких условиях выполняется закон Гука?», можно дать определенный ответ: «При малых деформациях».

Закон Гука, определение : деформация, которая возникает в теле, прямо пропорциональна силе, которая вызывает эту деформацию.

Естественно, это определение подразумевает, что:

  • сжатия или растяжения невелики;
  • предмет упругий;
  • он состоит из материала, при котором в результате сжатия или растяжения нет нелинейных процессов.

Закон Гука в математической форме

Формулировка Гука, которую мы привели выше, дает возможность записать его в следующем виде:

где — изменение длины тела вследствие сжатия или растяжения, F — сила, приложенная к телу и вызывающая деформацию (сила упругости), k — коэффициент упругости, измеряется в Н/м.

Следует помнить, что закон Гука справедлив только для малых растяжений.

Также отметим, что он при растяжении и сжатии имеет один и тот же вид. Учитывая, что сила — величина векторная и имеет направление, то в случае сжатия, более точной будет такая формула:

Но опять-таки, все зависит от того куда будет направлена ось, относительно которой вы проводите измерение .

В чем кардинальная разница между сжатием и растяжением? Ни в чем, если оно незначительно.

Степень применимости можно рассмотреть в таком виде:

Обратим внимание на график. Как видим, при небольших растяжениях (первая четверть координат) долгое время сила с координатой имеет линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и закон перестает выполняться. На практике это отражается таким сильным растяжением, что пружина перестает возвращаться в исходное положение, теряет свойства. При еще большем растяжении происходит излом, и разрушается структура материала.

При небольших сжатиях (третья четверть координат) долгое время сила с координатой имеет тоже линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и всё вновь перестает выполняться. На практике это отражается таким сильным сжатием, что начинает выделяться тепло и пружина теряет свойства. При еще большем сжатии происходит «слипание» витков пружины и она начинает деформироваться по вертикали, а затем и вовсе плавиться.

Как видим формула, выражающая закон, позволяет находить силу, зная изменение длины тела, либо, зная силу упругости, измерить изменение длины:

Также, в отдельных случаях можно находить коэффициент упругости. Для того, чтобы понять как это делается, рассмотрим пример задачи:

К пружине подсоединен динамометр. Ее растянули, приложив силу в 20 , из-за чего она стала иметь длину 1 метр. Затем ее отпустили, подождали пока прекратятся колебания, и она вернулась к своему нормальному состоянию. В нормальном состоянии ее длина составляла 87, 5 сантиметров. Давайте попробуем узнать, из какого материала сделана пружина.

Найдем численное значение деформации пружины:

Отсюда можем выразить значение коэффициента:

Посмотрев таблицу, можем обнаружить, что этот показатель соответствует пружинной стали.

Неприятности с коэффициентом упругости

Физика, как известно, наука очень точная, более того, она настолько точна, что создала целые прикладные науки, измеряющие погрешности. Будучи эталоном непоколебимой точности, она не может себе позволить быть нескладной.

Практика показывает, что рассмотренная нами линейная зависимость, является ничем иным как законом Гука для тонкого и растяжимого стержня. Лишь в качестве исключения можно применять его для пружин, но даже это является нежелательным.

Оказывается, что коэффициент k — переменная величина, которая зависит не только от того из какого материала тело, но и от диаметра и его линейных размеров.

По этой причине, наши умозаключения требуют уточнений и развития, ведь иначе, формулу:

нельзя назвать ничем иным как зависимостью между тремя переменными.

Модуль Юнга

Давайте попробуем разобраться с коэффициентом упругости. Этот параметр, как мы выяснили, зависит от трех величин :

  • материала (что нас вполне устраивает);
  • длины L (что указывает на его зависимость от);
  • площади S.

Важно! Таким образом, если нам удастся каким-то образом «отделить» из коэффициента длину L и площадь S, то мы получим коэффициент, полностью зависящий от материала.

Что нам известно:

  • чем больше площадь сечения тела, тем больше коэффициент k, причем зависимость линейная;
  • чем больше длина тела, тем меньше коэффициент k, причем зависимость обратно пропорциональная.

Значит, мы можем, коэффициент упругости записать таким образом:

причем Е — новый коэффициент, который теперь точно зависит исключительно от типа материала.

Введем понятие “относительное удлинение”:

. 

Вывод

Сформулируем закон Гука при растяжении и сжатии : при малых сжатиях нормальное напряжение прямо пропорционально относительному удлинению.

Коэффициент Е называется модулем Юнга и зависит исключительно от материала.

При растяжении и сжатии стержня изменяются его длина и размеры поперечного сечения. Если мысленно выделить из стержня в недеформированном состоянии элемент длиной dx, то после деформации его длина будет равна dx { (рис. 3.6). При этом абсолютное удлинение по направлению оси Ох будет равно

а относительная линейная деформация е х определяется равенством

Поскольку ось Ох совпадает с осью стержня, вдоль которой действуют внешние нагрузки, назовем деформацию е х продольной деформацией, у которой в дальнейшем индекс будем опускать. Деформации в направлениях, перпендикулярных к оси, называются поперечными деформациями. Если обозначить через b характерный размер поперечного сечения (рис. 3.6), то поперечная деформация определяется соотношением

Относительные линейные деформации являются безразмерными величинами. Установлено, что поперечные и продольные деформации при центральном растяжении и сжатии стержня связаны между собой зависимостью

Входящая в это равенство величина v называется коэффициентом Пуассона или коэффициентом поперечной деформации. Этот коэффициент является одной из основных постоянных упругости материала и характеризует его способность к поперечным деформациям. Для каждого материала он определяется из опыта на растяжение или сжатие (см. § 3.5) и вычисляется по формуле

Как следует из равенства (3.6), продольные и поперечные деформации всегда имеют противоположные знаки, что является подтверждением очевидного факта - при растяжении размеры поперечного сечения уменьшаются, а при сжатии увеличиваются.

Для различных материалов коэффициент Пуассона различен. Для изотропных материалов он может принимать значения в пределах от 0 до 0,5. Например, для пробкового дерева коэффициент Пуассона близок к нулю, а для резины он близок к 0,5. Для многих металлов при нормальных температурах величина коэффициента Пуассона находится в пределах 0,25+0,35.

Как установлено в многочисленных экспериментах, для большинства конструкционных материалов при малых деформациях между напряжениями и деформациями существует линейная связь

Этот закон пропорциональности впервые был установлен английским ученым Робертом Гуком и называется законом Гука.

Входящая в закон Гука постоянная Е называется модулем упругости. Модуль упругости является второй основной постоянной упругости материала и характеризует его жесткость. Поскольку деформации являются безразмерными величинами, из (3.7) следует, что модуль упругости имеет размерность напряжения.

В табл. 3.1 приведены значения модуля упругости и коэффициента Пуассона для различных материалов.

При проектировании и расчетах конструкций наряду с вычислением напряжений необходимо также определять перемещения отдельных точек и узлов конструкций. Рассмотрим способ вычисления перемещений при центральном растяжении и сжатии стержней.

Абсолютное удлинение элемента длиной dx (рис. 3.6) согласно формуле (3.5) равно

Таблица 3.1

Наименование материала

Модуль упругости, МПа

Коэффициент

Пуассона

Сталь углеродистая

Сплавы алюминия

Сплавы титана

(1,15-s-1,6) 10 5

вдоль волокон

(0,1 ^ 0,12) 10 5

поперек волокон

(0,0005 + 0,01)-10 5

(0,097 + 0,408) -10 5

Кладка из кирпича

(0,027 +0,03)-10 5

Стеклопластик СВАМ

Текстолит

(0,07 + 0,13)-10 5

Резина на каучуке

Интегрируя это выражение в пределах от 0 до х, получим

где и(х ) - осевое перемещение произвольного сечения (рис. 3.7), а С= и( 0) - осевое перемещение начального сечения х = 0. Если это сечение закреплено, то и(0) = 0 и перемещение произвольного сечения равно

Удлинение или укорочение стержня равно осевому перемещению его свободного торца (рис. 3.7), величину которого получим из (3.8), приняв х = 1:

Подставив в формулу (3.8) выражение для деформации? из закона Гука (3.7), получим

Для стержня из материала с постоянным модулем упругости Е осевые перемещения определяются по формуле

Входящий в это равенство интеграл можно вычислить двумя способами. Первый способ заключается в аналитической записи функции а(х) и последующем интегрировании. Второй способ основан на том, что рассматриваемый интеграл численно равен площади эпюры а на участке . Вводя обозначение

Рассмотрим частные случаи. Для стержня, растягиваемого сосредоточенной силой Р (рис. 3.3, а), продольная сила./Vпостоянна по длине и равна Р. Напряжения а согласно (3.4) также постоянны и равны

Тогда из (3.10) получаем

Из этой формулы следует, что если напряжения на некотором участке стержня постоянны, то перемещения изменяются по линейному закону. Подставляя в последнюю формулу х = 1, найдем удлинение стержня:

Произведение EF называется жесткостью стержня при растяжении и сжатии. Чем больше эта величина, тем меньше удлинение или укорочение стержня.

Рассмотрим стержень, находящийся под действием равномерно распределенной нагрузки (рис. 3.8). Продольная сила в произвольном сечении, отстоящем на расстоянии х от закрепления, равна

Разделив N на F, получим формулу для напряжений

Подставляя это выражение в (3.10) и интегрируя, находим


Наибольшее перемещение, равное удлинению всего стержня, получим, подставив в (3.13)х = /:

Из формул (3.12) и (3.13) видно, что если напряжения линейно зависят отх, то перемещения изменяются по закону квадратной параболы. Эпюры N, о и и показаны на рис. 3.8.

Общая дифференциальная зависимость, связывающая функции и(х) и а(х), может быть получена из соотношения (3.5). Подставляя в это соотношение е из закона Гука (3.7), найдем

Из этой зависимости следуют, в частности, отмеченные в рассмотренных выше примерах закономерности изменения функции и(х).

Кроме того, можно заметить, что если в каком-либо сечении напряжения а обращаются в нуль, то на эпюре и в этом сечении может быть экстремум.

В качестве примера построим эпюру и для стержня, изображенного на рис. 3.2, положив Е- 10 4 МПа. Вычисляя площади эпюры о для различных участков, находим:

сечение х = 1 м:

сечение х = 3 м:

сечение х = 5 м:

На верхнем участке стержня эпюра и представляет собой квадратную параболу (рис. 3.2, е). При этом в сечении х = 1 м имеется экстремум. На нижнем участке характер эпюры является линейным.

Общее удлинение стержня, которое в данном случае равно

можно вычислить, воспользовавшись формулами (3.11) и (3.14). Поскольку нижний участок стержня (см. рис. 3.2, а) растягивается силой Р { его удлинение согласно (3.11) равно

Действие силы Р { передается также и на верхний участок стержня. Кроме того, он сжимается силой Р 2 и растягивается равномерно распределенной нагрузкой q. В соответствии с этим изменение его длины вычисляется по формуле

Суммируя значения А/, и А/ 2 , получим тот же результат, что приведен выше.

В заключение следует отметить, что, несмотря на малую величину перемещений и удлинений (укорочений) стержней при растяжении и сжатии, пренебрегать ими нельзя. Умение вычислять эти величины важно во многих технологических задачах (например, при монтаже конструкций), а также для решения статически неопределимых задач.