Поток энергии в биосфере. Энтропийность биосферных процессов

Биосфера - это открытая термодинамическая система, которая получает энергию в виде лучистой энергии Солнца и тепловой энергии процессов радиоактивного распада веществ в земной коре и ядре планеты. Радиоактивная энергия, доля которой в энергетическом балансе планеты была значительной на абиотических фазах, сейчас не играет заметной роли в жизни биосферы, и основной источник энергии сегодня - это солнечное излучение. Ежегодно Земля получает от Солнца энергию, которая составляет около 10,5 * 1020 кДж. Большая часть этой энергии отражается от облаков, пыли и земной поверхности (около 34%), нагревает атмосферу, литосферу и Мировой океан, после чего рассеивается в космическом пространстве в виде инфракрасного излучения (42%), расходуется на испарение воды и образование облаков (23 %), на перемещение воздушных масс - образование ветра (около 1%). И только 0,023% солнечной энергии, попадающей на Землю, улавливается продуцентами - высшими растениями, водорослями и фототрофных бактериями - и запасается в процессе фотосинтеза в виде энергии химических связей органических соединений. За год в результате фотосинтеза образуется около 100 млрд. т органических веществ, в которых запасается не менее 1,8 * 1017 кДж энергии.

Эта связана энергия далее используется консументами и редуцентами в цепях питания, и за его счет живое вещество выполняет работу - концентрирует, трансформирует, аккумулирует и перераспределяет химические элементы в земной коре, раздробляет и агрегирует неживую вещество. Работа живого вещества сопровождается рассеянием в виде тепла почти всей запасенной в процессе фотосинтеза солнечной энергии. Лишь доли процента этой «фотосинтетической» энергии не попадают в цепи питания и консервируются в осадочных породах в виде органического вещества торфа, угля, нефти и природного газа.

Итак, в процессе работы, которую осуществляет биосфера, уловленного солнечная энергия трансформируется, то есть идет на выполнение так называемой полезной работы, и рассеивается. Эти два процесса подчиняются двум фундаментальным естественным законам - первом и втором законам термодинамики. Первый закон термодинамики часто называют законом сохранения энергии. Это означает, что энергия не может быть ни рожден, ни уничтожена, она может быть только трансформирована из одной формы в другую. Количество энергии при этом не меняется.



В экологических системах происходит много преобразований энергии: лучистая энергия Солнца благодаря фотосинтезу превращается в энергию химических связей органического вещества продуцентов, энергия, запасенная продуцентами, - на энергию, аккумулированную в органическом веществе консументов разных уровней, и т. д. Современное человеческое общество также превращает огромные количества одной энергии на другую. Второй закон термодинамики определяет направление качественных изменений энергии в процессе ее трансформации из одной формы в другую. Закон описывает соотношение полезной и бесполезной работы при переходе энергии из одной формы в другую и дает представление о качестве самой энергии.

Второй закон термодинамики, я считаю, царит среди законов Природы. И если ваша гипотеза противоречит этому закону, я ничем не могу вам помочь. (А. Эддингтон, английский астроном.

Вспомним, что во энергией понимают способность системы совершать работу. Но при любой трансформации энергии лишь часть ее расходуется на выполнение полезной работы. Остальные же безвозвратно рассеивается в виде тепла, т.е. осуществляется пустая работа, связанная с увеличением скорости беспорядочного движения частиц. Чем больший процент энергии расходуется на выполнение полезной работы и, соответственно, чем меньше процент при этом рассеивается в виде тепла, тем выше считается качество исходной энергии. Высококачественная энергия может быть без дополнительных энергетических затрат трансформирована в большее количество других видов энергии, чем низкокачественная.

Энергией низкого качества есть энергия беспорядочного броуновского движения, то есть тепловая. ее нельзя использовать для выполнения полезной работы. Количество энергии низкого качества, непригодной для совершения полезной работы, называют энтропией. Упрощенно энтропия - это мера дезорганизации, беспорядка, случайности систем и процессов.

Итак, по второму закону термодинамики, любая работа сопровождается трансформацией высококачественной энергии в энергию низшего и низкого качества - тепло - и приводит к росту энтропии.

Снизить энтропию в термодинамически закрытой системе, которая не получает энергии извне, невозможно - ведь вся качественная энергия такой системы в конце концов превращается в низкокачественную, деградирует к теплу. Однако в открытой термодинамической системе возможно противодействовать росту энтропии, используя для этого высококачественную энергию, поступающую извне, и отводя низкокачественную энергию за пределы системы.

Вселенная является закрытой системой, и в нем энтропия постоянно растет. Зато биосфера является открытой системой, которая поддерживает собственный низкий уровень энтропии, используя для этого внешний источник качественной лучистой энергии - Солнце - и рассеивая в космическое пространство низкокачественную тепловую энергию. Поэтому, кроме энтропии физической (энтропии замкнутой системы), в экологии используют понятие «энтропия экологическая» - количество необратимо рассеянной в пространстве тепловой энергии, которая, однако, компенсируется трансформируемой энергией внешнего источника - Солнца.

Биосфера как среда жизни. Учение В.И. Вернадского о биосфере. Фотобиос и хемобиос. Круговорот вещества, потоки энергии и информации как механизмы интеграции и гомеостаза биосферы. Ноосфера и техносфера, их коадаптивное развитие

Биосфера как среда жизни. Соврем. понятие о биосфере как особой оболочке З. разработано В.И.Вернадским.

Под биосферой понимается совокупность земных сфер, населенных жизнью, представляющая особую глоб. сферу, е к/й ведущую роль играют живые системы. Биосфера - крупнейшая экосистема З. Включает приземную часть атмосферы, всю гидросферу, почвы и верхние горизонты литосферы, которые объединяются в целостную систему круговоротом вещества, потоками энергии и информации.

Наиболее широко в биосфере распространены бактерии, споры которых найдены в атмосфере до высоты 80 км, в толще льда Антарктиды на всех исследованных глубинах. В литосфере они обнаруживаются, по разным данным, на глубинах 4,5 км, 6,82 и даже 10 км. В океане живые организмы обитают на любых глубинах, включая дно глубоководных впадин до 11,5 км. Однако большинство организмов живет в приземном слое атмосферы, на небольших глубинах океана (куда проникает солнечный свет), в почве и на ее поверхности.

В биосфере, подобно экосистемам, функционируют потоки энергии и информации, действует круговорот вещества, к/е и объединяют все подсистемы биосферы в сложнейшую целостную, способную к саморегуляции систему.

Фотобиос и хемобиос. Вся совокупность организмов, живущих за счет энергиии Солнца, называется фотобиосом. Организмы, использующие хим. энергию, составляют хемобиос. На долю хемобиоса приходится около 1% энергии биосферы, остальная принадлежит фотобиосу.

Круговорот веществ и потоки энергии в биосфере. Главная функция биосферы заключается в осуществлении круговорота хим. элементов. Глоб. биот. круговорот совершается при участии всех населяющих планету организмов. Он заключается в циркуляции веществ между почвой, атмосферой, гидросферой и живыми организмами. Благодаря биот.круговороту возможно длительное существование и развитие жизни при ограниченном запасе доступных хим. элементов.

В круговороте веществ различают малый круг биотического обмена (биогеоценотический) и большой (биосферный).

Большой круг биотического обмена -- это безостановочный планетарный процесс циклического, неравномерного во времени и пространстве перераспределения в-ва, энергии и информации, многократно входящих в непрерывно обновляющиеся эколог. системы биосферы. Большой круг биотического обмена наиболее ярко проявляется в круговороте воды и циркуляции атмосферы.

Малый биотический круговорот происходит на основе большого и заключается в циркуляции в-в м/ду почвой, растениями, живот. и микроорганизмами.

Оба круговорота взаимосвязаны и представляют собой как бы единый процесс. Втягивая в свои многочисленные орбиты косную среду, биотический круговорот веществ обеспечивает воспроизводство живого в-ва и оказывает активное влияние на облик биосферы. В основе круговорота веществ лежит наличие в биосфере двух основных типов питания: автотрофного и гетеротрофного.

Круговорот углерода начинается с фиксации атмосферной двуокиси углерода в процессе фотосинтеза. Часть образовавшихся в процессе фотосинтеза углеводов используется самими растениями для получения энергии, другая часть потребляется животными. Углекислый газ выделяется в процессе дыхания растений и животных. Мертвые растения и животные разлагаются, углерод их тканей окисляется и возвращается в атмосферу. Аналогичный процесс происходит и в океане.

Круговорот азота также охватывает все области биосферы. Хотя его запасы в атмосфере практически неисчерпаемы, высшие растения могут использовать азот только после соединения его с водородом или кислородом. Важнейшую роль при этом играют азотфиксирующие бактерии.

Гомеостатическая функция биосферы осуществляется на глоб. уровне. В биосфере поддерживается отн. постоянство физ.-хим. условий (климат., радиационных, геохим., гидрохимических и тд.), пригодных для существования в ней живых систем. Предполагается, что свыше 3,8 млрд. лет жизнь на нашей планете не прерывается. Уже примерно 3 млрд. лет на большей части поверхности Земли поддерживается температура в пределах 0-60°С.

Гомеостат. функция биосферы осущ-ся всеми ее сферами и их взаимодействием, в к/м особое значение принадлежит живым системам. Озон. экран ограничивает проникновение на поверхность планеты губительного УФ излучения; значительная теплоемкость воды придает гидросфере свойство термостабилизатора, вода обеспечивает распределение хим. веществ и перенос тепла; из глубин литосферы поступают свежие порции вещества, вовлекаемого в круговорот. Населенные живыми системами сферы Земли являются средой их обитания и предоставляют разнообразные условия для жизнедеятельности. Живые системы преобразуют среду обитания, делая ее пригодной для других живых форм.

В соответствии с термодинамическим принципом АЛе-Шателье -К.Брауна биосфера способна восстанавливать равновесие, нарушенное воздействием внешних причин. В геолог. истории биосферы были разномасштабные катастрофы, погубивших значительную часть биосферы. Один из них - мел-палеогеновый, широко известный в связи с вымиранием динозавров, аммонитов и ряда др. групп организмов. Однако со временем биосфера восстанавливала свою целостность, частично обновлялась. Катастрофы и последующее восстановление биосферы представляли часть процесса эволюции живой природы и биосферы.

Энергетич. функция биосферы - утилизация и накопление энергии Солнца, формирование потоков энергии. Из 100% энергии Солнца, поступающей на поверхность Земли, отражается 30%, рассеивается в качестве тепловой ~ 46%; на испарение и осадки тратится 23%, на ветер, волны и течения - 0,2%, на фотосинтез тратится 0,8%.

Закон эколог. пирамид, согласно которому при переходе с одного троф. уровня на следующий большая часть энергии теряется. В таком же соответствии находятся биомассы: биомасса потребителя в десятки раз меньше, чем биомасса потребляемого уровня.

Ноосфера и техносфера, коадаптивное развитие.

Ноосфера (сфера разума), по мысли В. И. Вернадского, должна неизбежно возникнуть из биосферы в результате ее эволюции. В ноосфере человек становится крупнейшей геологической силой, он может и должен перестраивать своим трудом и мыслью область своей жизни. Хаотичное саморазвитие, базирующееся на ест. саморегуляции, в ноосфере должно смениться разумной стратегией, на основе прогнозов и планов регулирующей ест. процессы развития.

Техносфера - техн. оболочка, исскуст. преобразованное пространство, планеты, под воздействием производительной деятельности чел. и её продуктов.

Учение о ноосфере, в разработке которого наряду с В. И. Вернадским участвовали известные философы Э. Леруа, П. А. Флоренский, с позиций сегодняшнего дня воспринимается как соц. утопия. Человек, опираясь на научно-технический прогресс, действительно стал геолог. по масштабам воздействия силой, но, силой разрушительной. Идеи переустройства мира на основе технического прогресса и социальной инженерии, весьма популярные во второй половине XIX и первой половине XX вв., при их практическом воплощении вылились в чудовищные эксперименты тоталитаризма и полностью дискредитировали себя. Идея ноосферы, возвышенная, но далекая от практической реализации, избежала этой судьбы и продолжает развиваться. По современному представлению в ноосфере люди научатся управлять не природой, а, прежде всего, сами собой. Такое новое прочтение идеи ноосферы содержит в себе концепция коэволюции (совместной эволюции) человека и биосферы Н. Н. Моисеева. Согласно этой концепции, для своего бескризисного состояния человечество должно потреблять не от 10 до 40% (по разным оценкам) первичной биологической продукции, а не более 1%. Это позволит человеку как биолог. виду вписаться в свою эколог. нишу и в ест. биогеохимические циклы. Для достижения этого человек должен перейти от изменения мира к совершенствованию себя, подобно тому, как при переходе от палеолита к неолиту на смену развитию физического типа человека пришло покорение им природы. Коэволюция рассматривается как согласование «стратегии разума» и «стратегии природы».

Текущая страница: 17 (всего у книги 49 страниц) [доступный отрывок для чтения: 33 страниц]

Шрифт:

100% +

3.4. Движение вещества и энергии в биосфере
3.4.1. Круговорот веществ в биосфере

Во все геологические периоды геосфера как внешняя оболочка Земли, в которой взаимодействуют земная кора, атмосфера (до озонового слоя), гидро– и биосфера и где сосредоточены жизнь и хозяйственная деятельность человека, развивалась как единое целое. Единство, саморегулирование и развитие обеспечивались непрерывным движением вещества и энергии в биосфере. Первоисточником энергии для экосистем служит Солнце. Поток солнечной энергии на Земле и ее трансформации показаны на рис. 3.1.

Поток энергии, посылаемый Солнцем к планете Земля, превышает 20 млн ЭДж/год. Из-за шарообразности Земли к границе всей атмосферы подходит только четверть этого потока. Из нее около 70 % отражается, поглощается атмосферой, излучается в виде длинноволнового инфракрасного излучения. Падающая на поверхность Земли солнечная радиация составляет 1,54 млн ЭДж/год.


Рис. 3.1. Поток солнечной энергии на Земле и ее трансформации (по Т.А. Акимовой, В.В. Хаскину, 1994):

П р и м е ч а н и е. Энергия выражена в эксаджоулях (ЭДж/год). 1 ЭДж = 10 18 Дж; горизонтальное сечение потока энергии – логарифмическое. На каждом из этапов трансформации большая часть энергии теряется.

Биосфера играет важную роль в распределении энергетических потоков на Земле. В год до Земли доходит около 1024 Дж солнечной энергии; 42 % из нее отражается обратно в космос, а остальная часть поглощается. Другим источником энергии является теплота земных недр: 20 % энергии возвращается в мировое пространство в виде теплоты, 10 % расходуется на испарение воды с поверхности Мирового океана. Зеленые растения в процессе фотосинтеза преобразуют около 10 22 Дж энергии в год, поглощают 1,7·10 8 т углекислого газа, выделяют около 11,5·10 7 т кислорода и испаряют 1,6·10 13 т воды. Исчезновение растений привело бы к катастрофическому накоплению углекислого газа в атмосфере, и через сотню лет жизнь на Земле в ее нынешних проявлениях погибла бы. Наряду с фотосинтезом в биосфере происходят почти такие же по масштабам процессы окисления органических веществ при дыхании и разложении.

В организмах содержатся все известные сегодня химические элементы. Для синтеза живого вещества необходимо примерно 40 элементов. Наибольшую роль выполняют основные биогенные элементы.

Биогенные элементы – это химические элементы, постоянно входящие в состав организмов. Они выполняют жизненно необходимые биологические функции, т. е. являются основой жизни. Прежде всего, это кислород (составляющий 70 % массы организмов), углерод (18 %), водород (10 %).

Другие элементы требуются в меньших количествах, но и они также необходимы. Это кальций, железо, калий, магний, натрий, кремний и др. Все элементы попеременно переходят из живой материи в материю косную (неживую), участвуя в более или менее сложных биогеохимических циклах.

Успехи аналитической химии и спектрального анализа расширили перечень биогенных элементов: ученые открывают все новые элементы, входящие в состав организмов в малых количествах (микроэлементы ), и открывают биологическую роль многих из них. Вернадский считал, что все химические элементы, постоянно присутствующие в клетках и тканях организмов в естественных условиях, вероятно, играют определенную физиологическую роль. Многие элементы имеют большое значение только для определенных групп живых существ (например, бор необходим для растений, ванадий – для асцидий и т. п.).

Содержание тех или иных элементов в организмах зависит не только от их видовых особенностей, но и от состава среды, пищи (в частности, для растений – от концентрации и растворимости тех или иных почвенных солей), экологических особенностей организма и других факторов. Все элементы попеременно переходят из живой материи в косную (неживую), участвуя в сложных биогеохимических циклах, которые можно разделить на две основные группы:

Круговорот газов и воды, в котором главным резервуаром элементов служит атмосфера (круговорот углерода, азота, кислорода);

Круговорот осадочный, элементы которого в твердом состоянии находятся в составе осадочных пород (круговорот фосфора, железа и серы).

Организмы участвуют в миграции химических элементов как прямо (выделение кислорода в атмосферу, окисление и восстановление различных веществ в почвах и гидросфере), так и косвенно (восстановление сульфатов, окисление соединений железа, марганца и других элементов). Биогенная миграция атомов вызвана тремя основными процессами: обменом веществ, ростом и размножением организмов.

Огромную роль в биогеохимической активности играет человек, извлекая ежегодно в ходе добычи полезных ископаемых миллиарды тонн горной породы. Влияние человека на глобальные геохимические процессы с каждым годом только растет.

Солнечная энергия на Земле вызывает два круговорота веществ:

Биосферный – безостановочный планетарный процесс закономерного циклического, но неравномерного перераспределения веществ, информации и энергии, многократно входящих в экосистемы биосферы. Это так называемый большой круг биотического обмена ;

Биогеоценотипический – многократное циклическое, но неравномерное во времени и незамкнутое обращение части веществ, энергии и информации, входящих в биосферный круговорот, в пределах биогеоценоза. Это так называемый малый круг биотического обмена .

Оба круговорота взаимосвязаны и представляют собой единый процесс.

На рис. 3.2. представлена принципиальная схема биотического круговорота.


Рис. 3.2. Принципиальная схема биологического (биотического) круговорота (по К.Ф. Реймерсу, 1990)


Основу биосферы и ее функций составляет, прежде всего, круговорот таких биологически важных веществ, как углерод, кислород, фосфор, азот и вода. Циклы элементов существенно отличаются от простого физического преобразования энергии, которая, в конце концов, деградирует в виде теплоты и никогда потом не используется снова.

Круговорот углерода является наиболее значимым для сохранения свойств биосферы. Единственным источником углерода, используемого автотрофными растениями для синтеза органического вещества, служит углекислый газ (диоксид углерода) – CO 2 , входящий в состав атмосферы или находящийся в растворенном состоянии в воде. Углерод горных пород (преимущественно карбонаты) автотрофами практически не используется.

Круговорот углерода начинается с фиксации атмосферного углекислого газа в процессе фотосинтеза (рис. 3.3).


Рис. 3.3. Круговорот углерода в биосфере


В результате фотосинтеза из диоксида углерода и воды образуются углеводы и высвобождается кислород, поступающий в атмосферу. Часть образовавшихся углеводов используется самим фотосинтезирующим организмом (зеленым растением или некоторыми микроорганизмами и простейшими) для получения энергии, идущей на рост и развитие, а часть – животными при поедании этих организмов. При этом диоксид углерода уходит в окружающую среду через корни, листья и некоторые другие органы растений, а также выделяется животными в процессе дыхания.

Мертвые животные и растения постепенно разлагаются микроорганизмами почвы, углерод их тканей окисляется до CO 2 и снова возвращается в атмосферу. Аналогичный процесс происходит не только на суше, но и в океане. Благодаря длительной фотосинтезирующей деятельности в атмосфере накопилось достаточное количество свободного кислорода для процветания белковой жизни. Более того, в настоящее время для процесса фотосинтеза лимитирующим фактором является не только низкое содержание в атмосфере СO 2 , но и высокое – кислорода. Фотосинтезирующие зеленые растения и карбонатная система моря весьма эффективно удаляют из атмосферы избыток СO 2 , который может привести к перегреву планеты и угнетению жизни.

Однако необыкновенно возросшее потребление ископаемого топлива, газовые выбросы промышленности, а также снижение поглотительной способности зеленых растений в связи со значительным сокращением лесов, прежде всего влажных джунглей Амазонки и таежных лесов Сибири, влияние ряда химических загрязнителей на сам процесс фотосинтеза начинают заметно отражаться и на атмосферном фонде круговорота углерода.

О масштабах круговорота углерода можно судить по следующим цифрам. Запасы углерода в атмосфере оцениваются в 700 млрд т, в гидросфере – в 50 000 млрд т. Если принять, что общий годовой фотосинтез, согласно существующим подсчетам, составляет соответственно 30 и 150 млрд т, то продолжительность круговорота углерода равна трем или четырем столетиям, а по некоторым данным, – 1000 лет. Действительно, содержание СO 2 в атмосфере не уменьшается, так как его запасы постоянно пополняются за счет дыхания, брожения и сгорания. Наоборот, существует реальная опасность того, что в результате развития промышленного производства и нарушения равновесного состояния биосферы содержание СO 2 в атмосфере может значительно вырасти, что приведет к целому ряду отрицательных эффектов.

Круговорот воды в биосфере (рис. 3.4) предполагает, что суммарное испарение уравновешивается выпадением осадков. В средних широтах растения способны задерживать до 25 % воды, выпадающей в виде осадков. Остальная вода впитывается в почву или стекает по поверхности в водоемы. Благодаря испарению часть воды снова возвращается в атмосферу.

В Германии был проведен количественный учет дождевой воды на всей территории страны. Выяснилось, что из годовой нормы осадков в 771 мм только 367 мм, или меньше 50 %, достигает моря в виде ливневых стоков; остальная вода, т.e. 404 мм, испаряясь, возвращается в атмосферу. Растения поглощают и транспирируют (испаряют) в атмосферу 38 % осадков. Показано, что задерживается и идет на создание живого вещества всего 1 % атмосферной влаги.



Рис. 3.4. Круговорот воды в биосфере


В экваториальных районах испарение играет еще более существенную роль. Например, известно, что тропические леса бассейна реки Конго испаряют 2/3 выпадающих осадков. Ежегодно с поверхности Мирового океана в атмосферу испаряется около 880 мм, с суши – 140 мм воды и столько же выпадает на Землю в виде осадков. Живые организмы играют активную роль в круговороте воды на Земле. Подсчитано, что вся вода планеты проходит через живую оболочку Земли за 2 млн лет. Из океана испаряется больше воды, чем попадает в него с осадками, на суше – наоборот. Лишние осадки, выпадающие на суше, попадают в ледяные шапки и ледники и сохраняются там, пополняя грунтовые воды, откуда растения забирают их с помощью корневой системы и используют на рост и развитие. Грунтовые воды питают реки и озера, из которых снова возвращаются в океан со стоком.

Удаление некоторого количества воды в виде паров и водорода в космос компенсируется в основном за счет ювенильной воды, т.e. поднимающейся на поверхность из глубоких магматических очагов в результате вулканической деятельности и землетрясений.

Круговорот азота (рис. 3.5) также охватывает все области биосферы. Его запасы в атмосфере практически неисчерпаемы, однако высшие растения могут усваивать азот лишь после того, как он образует легкорастворимые соли с водородом или кислородом. В этом процессе основополагающую роль играют азотфиксирующие бактерии. Растения, поглотившие азот, в дальнейшем поедаются животными. С энергетической точки зрения круговорот азота можно представить как ряд этапов, которые требуют энергии извне либо получают ее за счет энергонасыщенных соединений. В процессе круговорота азот протоплазмы переводится из органической в неорганическую форму в результате деятельности нескольких видов бактерий, каждый из которых выполняет одну индивидуальную функцию.


Рис. 3.5. Круговорот азота в биосфере


Атмосферный воздух является кладовой азота, так как на 78,09 % он состоит из него, но, как уже указывалось ранее, чтобы высшие растения смогли атмосферный азот усвоить, он должен соединиться с кислородом или водородом. С помощью азотфиксирующих бактерий азот атмосферы переходит в легкоусвояемые растениями формы. Растения, использовавшие азотсодержащие соли на pocт и развитие, поедаются животными. Продукты жизнедеятельности последних также с помощью бактерий разлагаются до аммиака, а затем другими микроорганизмами связываются до нитратов и нитритов и т. д. Таким образом, азот постоянно поступает в атмосферу благодаря жизнедеятельности денитрифицирующих бактерий, а также образуется при атмосферных электроразрядах (молниях) и снова включается в круговорот за счет деятельности азотфиксирующих бактерий и зеленых водорослей.

Для круговорота азота, как и для любого другого процесса, необходима энергия. Хемосинтезирующие бактерии, превращающие аммиак через ряд процессов в нитриты, получают энергию за счет разложения; денитрифицирующие и азотфиксирующие бактерии – за счет других источников.

Азот могут фиксировать многие бактерии, такие как свободноживущие Azotobacter и Clostridium , симбиотические клубеньковые бактерии бобовых растений, некоторые пурпурные и различные почвенные бактерии. Кроме того, показано, что водоросли и бактерии, живущие на листьях, и эпифиты тропических лесов также могут фиксировать атмосферный азот, часть которого опосредованно используется и деревьями, однако, не обнаружено ни одного высшего растения, которое могло бы самостоятельно получать азот из атмосферы и использовать его в процессе жизнедеятельности. Известно, что в биосфере в целом за год в среднем фиксируется из воздуха 140–700 мг/м 3 азота. В основном это биологическая фиксация, и лишь крайне незначительное количество фиксируется за счет фотохимических и электрических процессов.

Круговорот фосфора (рис. 3.6), в отличие от круговорота азота, является сравнительно простым процессом, хотя по своей значимости для биосферы ему не уступает. Основные запасы фосфора содержатся в различных горных породах, которые постепенно за счет вымывания и выветривания отдают фосфаты наземным экосистемам. Фосфаты потребляются, прежде всего, растениями разного уровня организации и используются ими для синтеза органических веществ, таких как аминокислоты, ферменты и др. При разложении растительных остатков и трупов животных бактериями фосфаты возвращаются в почву и затем снова используются растительными организмами и микробами. Помимо этого часть фосфатов выносится с паводковыми водами в море, что обеспечивает развитие фитопланктона и существование зависящих от него организмов. Часть фосфора, содержащегося в морской воде и морских организмах, может вновь возвращаться на сушу при вылове рыб, моллюсков, ракообразных, водорослей и т. д.



Рис. 3.6. Круговорот фосфора в природе


Фосфор – один из наиболее важных элементов живого вещества. Он принимает участие в основных биохимических реакциях, обеспечивающих жизнедеятельность организма и его целостность. В связи с высокой активностью в окружающей среде свободный фосфор является относительно редким элементом. Ежегодно человеком добывается 2–2,5 млн т фосфорсодержащих пород, используемых в качестве минерального сырья для получения ряда продуктов, при этом большая часть фосфора исключается из круговорота. Запас же таких пород ограничен, и уже в настоящее время ощущается их дефицит.

Круговорот биогенных элементов в значительной мере обеспечивает плодородие почв. На суше главным источником биогенных катионов служит почва, в которую они поступают в процессе разрушения материнских пород, а также приносятся атмосферными осадками. Катионы адсорбируются корнями, а затем распределяются по разным вегетативным органам растений. В наибольшем количестве биогенные катионы накапливаются в листьях. Травоядные животные поедают растительную биомассу, травоядных животных поедают хищники или они умирают, минерализация экскрементов и трупов возвращает биогенные элементы снова в почву. В умеренных широтах бо́льшая часть минеральных питательных веществ сохраняется в мощном слое гумуса, в котором создаются резервы биогенов и основных питательных веществ. Поэтому выкашивание травы, сбор опада в лесу, выпас скота, корчевка пней, выжигание растительности, снятие дерна приводит к исчезновению такого ресурса питательных веществ, как гумус. В результате этого нарушается круговорот биогенных элементов, происходит трансформация лесной экосистемы в пустошь или луг со скудной растительностью.

3.4.2. Основные закономерности движения энергии в биосфере

Все преобразования веществ в процессе круговорота требуют затрат энергии. Ни один живой организм самостоятельно не продуцирует энергию, она может быть получена только извне. В современной биосфере основным источником энергии для биогенного круговорота является Солнце. По приблизительным расчетам, если энергию солнечного излучения принять за 100 %, то только 15 % ее достигает поверхности Земли и только 1 % связывается в виде органического вещества растениями, основными продуцентами первичной продукции. Около половины этой энергии расходуется на процессы жизнедеятельности (потери на дыхание). Оставшиеся 50 % идут на рост биомассы. Таким образом, чистая продукция соответствует примерно 0,5 % солнечной энергии, падающей на Землю. Накопленная в процессе фотосинтеза биомасса растений (первичная продукция) – это резерв, часть которого используется в качестве пищи организмами – гетеротрофами (консументами 1-го порядка). Остальная часть – это реальное количество массы растительности в экосистеме.

По словам Одума, «экология, по сути дела, изучает связь между светом и экологическими системами и способы превращения энергии внутри системы».

Жизнь возникает и развивается в потоке энергии, которая частично аккумулируется в биосистемах в разного рода круговоротах вещества. Ранее были рассмотрены только глобальные круговороты, охватывающие всю биосферу в целом. Кроме этого, существуют и малые круговороты, характерные для отдельных экосистем. В любом многоклеточном организме также можно выделить несколько круговоротов, необходимых для жизнедеятельности, аналогичных биогеохимическим циклам биосферы.

Подобные движения вещества можно наблюдать и в цитоплазме одноклеточных организмов. Даже в небиологических системах при достаточно большой разнице сил на входе и выходе системы можно наблюдать переход ее в нелинейное состояние, иногда достаточно явно сопровождающийся возникновением циклических движений вещества или автоколебаний (например, турбулентное течение жидкости, ячейки Бернара, реакции Белоусова – Жаботинского и т. п.). Иначе говоря, внутрисистемный круговорот веществ – это и есть способ аккумулировать энергию в системе.

Движение энергии в биосфере существенно отличается от движения вещества.

Согласно принципу роста энтропии поток энергии направлен всегда в одну сторону, круговорот энергии невозможен. Живое вещество уменьшает энтропию части энергии, аккумулируя ее в своих структурах. Но большая часть энергии, проходя через биосферу, деградирует и покидает планету в виде низкокачественной тепловой энергии. Энергия может накапливаться, затем снова высвобождаться, но ее нельзя использовать вторично.

Принципиальная невозможность утилизации тепловой энергии на фоне прогрессирующего роста количества энергии, высвобождаемой человеком непосредственно на планете (сжигание топлива, расщепление ядра, ядерный синтез и т. п.) помимо солнечной энергии, есть один из важнейших факторов надвигающейся экологической катастрофы.

Известно, что потребление энергии человечеством на нашей планете исторически протекало крайне неравномерно и возрастало параллельно со скоростью накопления информации. Люди за всю историю своего существования израсходовали около 900–950 тыс. ТВт∙ч энергии всех видов, причем почти две трети этого количества приходится на последние 40–50 лет. За последние 100 лет мировое потребление энергии увеличилось в 14 раз. Суммарное потребление первичных энергоресурсов за это время превысило 380 млрд т условного топлива со средним КПД энергетики техносферы, равным 30 %.

Относительный вклад различных энергоносителей в общее использование энергии характеризуется такими средними величинами: уголь – 27 %; нефть – 34, газ – 17, гидроэнергия – 6, ядерная энергия – 8,5, прочие источники – 7,5 %.

Энергетическая мощность нынешней техносферы по величине приблизительно равна 6 % всей продукционной мощности экосферы.

3.4.3. Энергетика биосферы

Энергия – это способность совершать работу. Несмотря на то что вся современная наука проникнута этим понятием, природа энергии до сих пор до конца не понята.

Впервые наиболее полно понятие энергии было проработано в термодинамике, что вылилось в формулировку двух наиболее основополагающих законов, описывающих свойства энергии.

Более 100 лет назад установлен первый закон термодинамики , или закон сохранения энергии , – один из фундаментальных законов физики, который нашел свое подтверждение в различных областях – от механики Ньютона до ядерной физики.

Согласно этому закону энергия не может быть уничтожена или получена из ничего, она может лишь переходить из одной формы в другую, т. е. никогда не исчезает и не создается заново.

Частным случаем данного закона является первое начало термодинамики , которое устанавливает взаимную превращаемость всех видов энергии: теплота Q , сообщенная неизолированной системе (например, пару в тепловой машине), расходуется на увеличение ее внутренней энергии ΔU и совершение ею работы А против внешних сил:

Q = ΔU + A .

Второе начало термодинамики , или закон возрастания энтропии , – все реальные процессы превращения энергии сопровождаются ростом энтропии, т. е. переходом энергии в более рассеянное состояние.

Все процессы в природе подчиняются действию этих законов термодинамики и непосредственно связаны с количеством и качеством используемой энергии.

Энтропия – это величина, характеризующая направление естественных процессов теплопередачи и, как выяснилось, вообще любых процессов преобразования энергии.

Энтропию называют тенью энергии. В более широком смысле под энтропией понимают меру качества, т. е. меру концентрации и упорядочения энергии. Тепловая энергия с бо́льшей температурой обладает меньшей энтропией:

S = Q / T ,

т. е. бо́льшим качеством, чем такое же количество теплоты при меньшей температуре. Поэтому по мере понижения температуры рабочего тела, например пара, до температуры окружающей среды можно попутно превратить часть тепловой энергии в механическую работу (тепловая машина). Чем больше качество энергии, т. е. чем больше превышение температуры пара над температурой окружающей среды, тем большее количество работы можно получить.

Разные виды энергии обладают разным качеством. Например, упорядоченное движение частиц твердого тела (механическое движение) обладает бо́льшим качеством, чем хаотичное движение этих же частиц с той же средней скоростью (тепловое движение). Поэтому любое механическое движение при наличии трения сопровождается самопроизвольным превращением части механической энергии в тепловую.

Если говорить об энергии, особенно в контексте, связанном с энергетическим кризисом, следует помнить, что энергии на Земле вполне достаточно. Теплоход, идущий по океану, двигается по морю энергии. Тем не менее он вынужден везти с собой запас угля, потому что энергия океана обладает низким качеством. Для полезного использования нужна именно высококачественная энергия, энтропия которой ниже энтропии энергии, рассеянной в окружающей среде. Энергию океана можно использовать только при наличии холодильника с более низкой температурой, чем температура океана.

Именно разность энтропий на входе и выходе энергетического потока порождает фактор, который обозначается понятием силы , приводящей в движение все процессы в природе. По сути, любая сила имеет энтропийную природу.

Наличие упорядоченных структур типа кристаллических решеток способствует упорядочению движения частиц за счет уменьшения их степеней свободы. Принцип роста энтропии требует роста количества степеней свободы в каждом реальном процессе превращения энергии. Поэтому все упорядоченные структуры имеют тенденцию к разрушению. «Все разрушается, все умирает, все приходит в хаос» – это еще одна формулировка второго закона термодинамики.

Помимо такого разрушения есть еще один способ увеличения количества степеней свободы – усложнение структуры системы. Именно по этому пути движется глобальный эволюционный процесс. При этом природа никогда не стремится достичь полного хаоса на данном уровне системной иерархии. В этом случае эволюция Вселенной остановилась бы достаточно быстро. Как правило, в пределах данного иерархического уровня образуются некоторые устойчивые структуры, из которых строятся более высокие иерархические уровни, характеризующиеся бо́льшими значениями максимально возможной энтропии, чем на предыдущем уровне. Это дает возможность непрерывному росту энтропии.

Обычно тенденция к возникновению хаоса реализуется в стремлении вещества к рассеянию (например, растворение сахара в воде). Но в случае сложных органических соединений бо́льший хаос (рассеяние энергии) может быть достигнут именно при концентрации вещества. Например, капельки масла, рассеянные в воде, стремятся слиться в одну большую каплю, в связи с тем что молекулы воды окутывают молекулы углеводорода масла своеобразной упорядоченной оболочкой. Чем больше поверхность масла, тем более упорядоченными оказываются молекулы воды, чего природа допустить не может, и в хаосе движения капель они обязательно рано или поздно примут состояние с наименьшей поверхностью, т. е. сольются в одну большую каплю.

Именно это, вероятно, послужило в свое время началом одноклеточной жизни. Именно так в растворе белковых молекул формируются коацерватные капли, имеющие стабильную и иногда достаточно сложную структуру и поглощающие из раствора строго определенные вещества.

В биосистемах стремление к хаосу реализуется в еще более сложных механизмах. Клетка может увеличить площадь своей поверхности, например приобрести форму эллипсоида, цилиндра (палочки) или нити, образовать корнеподобные выросты, ложноножки и т. п. Многоклеточные организмы решают подобную проблему аналогичным образом. У растений увеличивается поверхность листьев и корней. У животных в отличие от растений подобное увеличение поверхности осуществляется обычно внутри организма, чтобы не мешать движению. Достаточно вспомнить развитые поверхности кишечника, органов дыхания, кровеносной системы и т. п. Например, общая поверхность всех эритроцитов взрослого человека составляет около 3000 м 2 , общая длина всех капилляров – около 100 000 км и т. д.

Нечто аналогичное происходит и в рамках таких сверхорганизмов, как экосистемы. Здесь дифференциация достигается увеличением экологических ниш и разнообразия видов, населяющих данную экосистему, удлинением и усложнением пищевых цепей, совершенствованием внутривидовых и межвидовых отношений и т. п. Все это есть следствие принципа роста энтропии.

Таким образом, разрушение структуры, требуемое принципом роста энтропии, является необходимым компонентом жизненного процесса. Но жизнь научилась использовать разрушение во благо, поэтому разрушение не обязательно сопровождается гибелью биосистем. Умеренное разрушение, на которое накладываются определенные запрограммированные ранее ограничения, приводит к расширению и усложнению жизни. Наиболее характерно в этом отношении деление клетки. Здесь смерть и рождение слились в одном процессе.

Если движение вещества зачастую организуется в глобальный круговорот, захватывающий многие экосистемы биосферы, то движение энергии удобно рассматривать на примере какой-то одной экосистемы. Достаточно крупные экосистемы, такие как биогеоценозы, имеют все промежуточные уровни, которые проходит энергия при движении ее от состояния солнечного света до состояния теплоты, вначале утилизирующейся в буферных зонах биосферы (атмосфера, гидросфера, литосфера), а затем излучающейся в космическое пространство (в инфракрасной части электромагнитного спектра).

Вывод энтропии из организма есть непременное условие его существования. Все процессы жизнедеятельности сопровождаются ростом внутренней энтропии организма: ΔS > 0. Для того чтобы не погибнуть, клетка должна потребить из окружающей среды отрицательную энтропию (негэнтропию, информацию) ΔS < 0, что равносильно выводу энтропии из организма. Для этого обычно используется энергия химических реакций. Нужно взять из окружающей среды необходимые компоненты (пища) и создать условия для протекания реакции, продуктами которой должны стать вещества, содержащие в своей структуре больше энтропии, чем исходные компоненты. Обычно в этих реакциях разрушаются структуры более сложных молекул (например, молекул белка, жиров или углеводов). Затем эти продукты распада удаляются из организма. Себе же организм оставляет нечто, характеризующееся разницей энтропии исходных компонентов и энтропии продуктов реакции. Это нечто называется свободной энергией , которая по отношению к данному организму обладает отрицательной энтропией (негэнтропией) и за счет которой приводятся в движение внутренние упорядоченные процессы.

Например, глюкоза используется в организме, образуя диоксид углерода и воду. Это один из самых универсальных процессов, который лежит в основе дыхания и пищеварения. Диоксид углерода и вода удаляются из организма при дыхании, потовыделении, с экскрементами и т. п. Высвобожденная энергия претерпевает ряд превращений, обеспечивая тем самым протекание всех физиологических процессов, двигательных функций и т. п. Эту часть энергии рассматривают как траты на дыхание. Частично деградируя в каждом таком превращении, энергия постепенно полностью переходит в теплоту, которая после этого удаляется из организма в окружающую среду.

Однако не вся свободная энергия проходит через организм подобным путем. Часть свободной энергии используется на организацию ряда эндотермических реакций, т. е. связывается в сложных молекулярных структурах. В первую очередь это реакции синтеза необходимых белков, нуклеиновых кислот и т. п. В данном случае доля свободной энергии идет на упорядочение внутренней структуры организма. Эта энергия, накопленная в веществе организма, называется продукцией .

Некоторая доля пищи не усваивается организмом, следовательно, из нее не высвобождается энергия. Она выводится из организма вместе с экскрементами и впоследствии высвобождается из них уже другими организмами.

Ввиду наличия в своей структуре сложных молекулярных соединений данный организм может служить пищей для другого организма. При этом его структура подвергается механическому и химическому разрушению. Высвободившаяся свободная энергия используется так же, как в вышеописанном случае. Таким образом, формируется пищевая , или трофическая, цепь , в которой происходит перенос энергии через ряд организмов путем поедания одних организмов другими.

Живая оболочка планеты непрерывно поглощает не только энергию Солнца, но и идущую из недр Земли; энергия трансформируется и передается от одних организмов к другим и излучается в окружающую среду. Следует четко представлять себе, что является источниками энергии в биосфере, куда текут энергетические потоки и какова их роль в создании биомассы.

Уже отмечалось, что единственным первичным источником внешней энергии на Земле является световое и тепловое излучение Солнцаj (см. гл. 2). Ежегодно на земную поверхность падает около 21 1023 кДж, из этой величины на участки Земли, покрытые растениями, а также на водоемы, с содержащейся в них растительностью, приходится только около 40%. С учетом потери энергии радиации вследствие отражения и других причин, а также энергетического выхода фотосинтеза, не превышающего 2%, общее количество энергии, запасаемой ежегодно в продуктах фотосинтеза, выразится величиной порядка 20 1022 кДж. Кроме создания чистой продукции, живой покров суши использует захваченную им энергию Солнца для процесса дыхания. Эти энергетические затраты составляют около 30-40% энергии, расходуемой на создание чистой продукции. Таким образом, растительность суши в год преобразует суммарно (на дыхание и создание чистой продукции) около 4,2 1018 кДж солнечной энергии.

Создание и существование биомассы неразрывно связаны с поступлением энергии и веществ из окружающей среды. Большинство веществ земной коры проходит через живые организмы и вовлекается в биологический круговорот веществ, создавший биосферу и определяющий ее устойчивость. В энергетическом отношении жизнь в биосфере поддерживается постоянным притоком энергии от Солнца и использованием ее в процессах фотосинтеза. Поток солнечной энергии, воспринимаясь молекулами живых клеток, преобразуется в энергию химических связей. В процессе фотосинтеза растения используют лучистую энергию солнечного света для превращения веществ с низким содержанием энергии (С02 и Н2О) в более сложные органические соединения, где часть солнечной энергии запасена в форме химических связей.

Органические вещества, образованные в процессе фотосинтеза, служат источником энергии для самого растения или переходят в процессе поедания и последующего усвоения от одних организмов к другим: от растений к растительноядным животным, от них - к плотоядным и т.д. Высвобождение заключенной в органических соединениях энергии происходит также в процессе дыхания или брожения, разрушение использованных или отмерших остатков биомассы осуществляют разнообразные организмы, относящиеся к числу сапрофитов (гетеротрофные бактерии, грибы, некоторые животные и растения). Они разлагают остатки биомассы на неорганические составные части (минерализация), способствуя вовлечению в биологический круговорот соединений и химических элементов, что обеспечивает очередные циклы продуцирования органического вещества. Укажем, что содержащаяся в пище энергия не совершает круговорота, а постепенно превращается в тепловую энергию. В итоге поглощенная организмами в виде химических связей солнечная энергия снова возвращается в пространство в виде теплового излучения. Поэтому биосфере требуется постоянный приток энергии извне. Эту важнейшую функцию и выполняет Солнце, обеспечивающее в течение многих миллиардов лет постоянный поток энергии через биосферу. При этом к Земле приходит коротковолновое излучение (свет), а уходит от нее длинноволновое тепловое излучение. Существенно, что баланс этих энергий не соблюдается: планета излучает в Космос несколько меньше энергии, нежели получает от Солнца. Эту разность (доли процента) и усваивает биосфера, постепенно, но постоянно накапливая энергию. Ее оказалось достаточно для того, чтобы однажды на планете появилась жизнь, возникла биосфера, чтобы и ныне поддерживать все грандиозные процессы развития планеты.

Чтобы биосфера могла существовать и развиваться, ей необходима энергия. Собственных источников энергии она не имеет и может потреблять энергию только от внешних источников. Главным источником для биосферы является Солнце. Солнечный свет для биосферы является рассеянной лучистой энергией электромагнитной природы.
В идеальном случае экосистема со сбалансированной жизнедеятельностью автотрофных организмов и гетеротрофных организмов может приближаться к замкнутой системе, обменивающейся с окружающей средой только энергией. Однако в естественных условиях длительное существование экосистем возможно при притоке из окружающей среды не только энергии, но и большего или меньшего количества вещества. Все реальные экосистемы, в совокупности слагающие биосферу Земли, принадлежат к открытым системам, обменивающимся с окружающей их средой веществом и энергией.

Энергия (гр. еnergeiа – деятельность) – источник жизни, основа и средство управления всеми природными и общественными системами. С помощью энергии производятся все продукты питания, необходимые для жизни человека и других организмов. Энергия позволяет переводить вещества из одного состояния в другое, осуществлять круговорот веществ и производить все виды работы в природе.

Энергия – движущая сила мироздания. Основное свойство материи - способность производить работу. Законы превращения энергии проявляются во всех процессах, происходящих в природе и обществе, включая экономику, культуру, науку и искусство. Компонент энергии есть во всем: в материи, информации, произведениях искусства и человеческом духе.

Все, что происходит внутри и вокруг нас, основано на работе, в процессе которой одни виды энергии переходят в другие, согласно фундаментальным законам физики. Законы термодинамики имеют универсальное проявление в природе.

Лауреат Нобелевской премии Ф. Садди писал: «Законы термодинамики определяют взлеты и падения политических систем, свободу и ограничения государств, развитие торговли и промышленности, причины богатства и нищеты, благосостояние человечества». Ясно, что будущее зависит от объединения энергетики, экономики и экологии (трех «Э») в единую систему взаимосвязанных явлений и процессов. Изучение таких систем требует системного подхода, поскольку энергия – это тот фундамент, который позволяет природные ценности перевести в ряд экономических, а экономические - оценивать с позиций экологии.

Природные экологические системы могут служить моделью общих принципов функционирования систем, основанных на энергетических процессах. Эти системы существуют на Земле много миллионов лет, несмотря на их огромное биоразнообразие и индивидуальные качества различных биосистем, в их поведении есть общие черты, связанные с принципиальным сходством энергетических процессов.

Превращение энергии Солнца в энергию пищи путем фотосинтеза, происходящего в зеленом листе, иллюстрирует действие двух законов термодинамики, которые справедливы и для любых систем.

Первый закон термодинамики – закон сохранения энергии – гласит: энергия не создается и не исчезает, она превращается из одной формы в другую. В результате превращений энергии определено, что никогда нельзя получить энергии больше чем затрачено - нельзя из ничего получить нечто. На выходе из системы энергия преобразуется в иные формы.

Любая преобразовательная деятельность человека не в состоянии ни создать, ни уничтожить ни единого атома вещества, а лишь позволяет перевести из одного состояния в другое. С точки зрения природопользования необходимо усвоить, что любой процесс будет создавать отходы, которые также являются частью преобразовательного природного вещества.

Необходимо совершенно четко представлять, что закон сохранения энергии имеет всеобщий характер и распространяется на все процессы на Земле, включая общественные и иные отношения человечества. Так, он безусловно действует в экономике; например, закон стоимости и его выражение в денежной форме является его прямым следствием.

Второй закон термодинамики утверждает: при любых превращениях энергия переходит в форму, наименее пригодную для использования и наиболее легко рассеивающуюся. Этот закон устанавливает, что любые превращения энергии не позволяют получить ее больше, чем было затрачено изначально, то есть любой материальный объект на Земле при любых физических, химических или иных изменениях может лишь видоизменять энергию из одного вида в другой, но не добиться ее возникновения или исчезновения.

При определении любого энергетического процесса, текущего самопроизвольно, происходит переход энергии из концентрированной формы в рассеянную, то есть всегда существуют потери энергии (в виде недоступного для использования тепла), при этом стопроцентный переход из одного вида энергии в другой невозможен. Характерно действие этого закона при переходе из одной формы в другую в живых системах: солнечная энергия в растениях при помощи фотосинтеза преобразуется в органическое вещество и далее в пище консументов преобразуется в движение мышц, работу мозга и другие проявления жизни.

На каждом этапе высококачественная энергия переходит с одного уровня на другой, и при этом ее основная часть превращается в низкокачественное тепло и рассеивается в окружающей среде. В открытых системах энтропия (мера количества связанной энергии, которая в изотермическом процессе недоступна для использования, мера беспорядка, неупорядоченности системы) переходит не в полезную работу, а в тепло и рассеивается в пространстве и снижается до определенной минимальной величины, но всегда большей нуля.

Закон однонаправленности потока энергии: энергия, получаемая сообществом и усваиваемая продуцентами, рассеивается или вместе с их биомассой передается консументам, а затем редуцентам с падением потока на каждом трофическом уровне. Поскольку в обратный поток (от редуцентов к продуцентам) поступает ничтожное количество изначально вовлеченной энергии (максимум 0,35%) говорить о «круговороте энергии» нельзя: существует лишь круговорот веществ, поддерживаемый потоком энергии.

Для экологических биологоэволюционных, а также общественных процессов важное значение имеет принцип (закон) диссипации (рассеивания) Л. Онсагера или принцип экономии энергии (экономии энтропии). Он определяет, что при возможности развития процесса в некотором множестве направлений (каждое из которых допускается началами термодинамики) будет реализовано то, которое обеспечивает минимум диссипации энергии (то есть минимум роста энтропии).

Все органические молекулы, образующие ткани живого (целлюлоза, жиры, сахара, крахмал и т.п.) содержат не только атомы углерода, водорода и некоторых других элементов. Кроме того, в них запасена потенциальная энергия. Доказательством может служить тот факт, что все названные вещества горят. Тепло и свет пламени означают высвобождение их потенциальной энергии в виде кинетической.

И, напротив, при синтезе органических молекул из неорганического «сырья» происходит запасание потенциальной энергии, требующее поступление извне кинетической энергии.

Первичное органическое вещество на Земле образуется, в основном, зелеными растениями под воздействием солнечной энергии. Согласно второму началу термодинамики любые виды энергии в конечном итоге превращаются в тепловую форму и рассеиваются. Ряд химических реакций сопровождается выделением, рассеиванием энергии. Реакция же фотосинтеза идет против температурного (термодинамического) градиента, т.е. сопровождается накоплением энергии в органическом веществе за счет преобразования энергии фотонов в энергию химических связей.

2-ой принцип функционирования экосистемы: экосистемы существуют за счет не загрязняющей среду и практически неограниченной солнечной энергии, количество которой относительно постоянно и избыточно.

Живые организмы, входящие в состав биоценоза, неодинаковы с точки зрения специфики ассимиляции ими вещества и энергии. В отличие от растений животные не способны к реакциям фото- и хемосинтеза, а вынуждены использовать солнечную энергию опосредованно - через органическое вещество, созданное фотосинтетиками. Таким образом, в биогеоценозе образуется цепь последовательной передачи вещества и эквивалентной ему энергии от одних организмов к другим или так называемая трофическая (греч. «трофе» - питаюсь) цепь.

Концентрационная (накопительная) функция – это избирательное накопление определенных веществ, рассеянных в природе (водорода, углерода, азота, кислорода, кальция, магния, натрия, калия, фосфора и многих других, включая тяжелые металлы), в живых существах. Раковины моллюсков, панцири диатомовых водорослей, скелеты животных – все это примеры проявления концентрационной функции живого вещества.
Способность концентрировать элементы из разбавленных растворов - это характерная особенность живого вещества. Наиболее активными концентраторами многих элементов являются микроорганизмы. Например, в продуктах жизнедеятельности некоторых из них по сравнению с природной средой содержание марганца увеличено в 1 200 000 раз, железа - в 65 000, ванадия - в 420 000, серебра - в 240 000 раз.

Для построения своих скелетов или покровов активно концентрируют рассеянные минералы морские организмы. Так, существуют кальциевые организмы - известковые водоросли, моллюски, кораллы, мшанки, иглокожие, и т.п. и кремниевые - диатомовые водоросли, кремниевые губки, радиолярии. Особого внимания заслуживает способность морских организмов накапливать микроэлементы, тяжелые металлы, в том числе ядовитые (ртуть, свинец, мышьяк) радиоактивные элементы. В теле беспозвоночных и рыб их концентрация может в сотни тысяч раз превосходить содержание в морской воде. Вследствие этого морские организмы полезны как источник микроэлементов, но вместе с тем употребление их в пищу может грозить отравлением тяжелыми металлами или быть опасным в связи с повышенной радиоактивностью.

Продуценты и питающиеся ими консументы образуют два первых звена трофической цепи. Вторичные консументы (второго порядка) продолжают трофическую цепь, которая на этом не заканчивается, и вторичный консумент может служить источником питания для консументов третьего порядка и т.д.
Цепи бывают простыми (например, трава - заяц - лисица) и более сложными (например, трава - насекомые - лягушки - змеи - хищные птицы). Разные трофические цепи связаны между собой общими звеньями, образуя сложную систему, называемую трофической сетью.
В процессе питания на всех трофических уровнях появляются отходы: опад листьев зеленых растений, гибель различных организмов и др. В конечном итоге созданное органическое вещество должно частично или полностью замениться с помощью детритофагов (раки, черви, термиты) и редуцентов (грибы, бактерии), которые постепенно разлагают органические остатки продуцентов и консументов до минеральных веществ. Минеральные вещества и СО2, выделяющиеся при дыхании детритофагов и редуцентов, вновь возвращаются к продуцентам.
Растительные остатки, поступающие в почву, включают: 45% О2, 42% Н2, 6,5% N2, 1,5% воды, содержащей, в основном, Ca, Si, K и P (зольные элементы). Особенно велика роль микроорганизмов в процессах разложения мертвого органического вещества в почве.
Бактерии делятся на: аэробные и анаэробные. Аэробные используют для дыхания свободный кислород, анаэробные - отбирают кислород от каких-либо соединений, например, оксидов. Например, целлюлоза под влиянием микроорганизмов разрушается до СО2 и воды (в присутствии кислорода), или до водорода и метана (в анаэробных условиях). Смолы и жиры подвергаются окислению до СО2 и Н2О (в аэробных условиях), нор в анаэробных - практически не разлагаются. В аэробных условиях органические соединения минерализуются интенсивнее, но такие условия создаются редко и чередуются с анаэробными, при которых возможно накопление промежуточных продуктов.

Белки подвергаются процессу аммонификации (связанному с образованием аммиака и далее солей аммония, доступных для ассимиляции растениями).
Однако часть аммиака под воздействием нитрифицирующих бактерий нитрифицируется, т.е. окисляется, сначала до азотистой кислоты, а затем до азотной кислоты и, наконец, при взаимодействии HNO3 с основаниями почвы образуются соли азотной кислоты. В каждом процессе участвует особая группа бактерий. В анаэробных условиях соли азотной кислоты подвергаются денитрификации с выделением свободного азота.
Трофическая цепь в биогеоценозе есть одновременно энергетическая цепь, т.е. последовательный упорядоченный поток передачи энергии Солнца от продуцентов ко всем остальным звеньям. Любое количество органического вещества эквивалентно некоторому количеству энергии (энергию можно извлечь, разрушив химические связи органического вещества).
Организмы-потребители (консументы), питаясь органическим веществом продуцентов, получают от них энергию, частью идущую на построение собственного органического вещества и связывающуюся в молекулах, соответствующих химических соединений, а частью расходующуюся на дыхание, теплоотдачу, выполнение движений в процессе поиска пищи, спасение от врагов и т.п.
Организмы используют большую часть энергии, ассимилируемой ими с пищей, для выполнения разнообразной работы, для роста и размножения. Ассимилированная энергия, которая не теряется в процессах дыхания и выделения, может быть использована для синтеза новой биомассы в результате роста и размножения.
Движение энергии через сообщество зависит от эффективности, с которой организмы потребляют свои пищевые ресурсы и превращают их в биомассу. Эта эффективность называется эффективностью пищевой цепи или экологической эффективностью. Экологическая эффективность зависит от эффективностей трех главных ступеней в потоке энергии: эксплуатации, ассимиляции и чистой продукции.
Рассматривая потоки энергии в экосистемах, легче понять, почему с повышением трофического уровня биомасса снижается. Любую популяцию живых организмов можно рассматривать как биомассу, которая каждый год увеличивается за счет роста и размножения организмов и одновременно сокращается за счет естественной гибели и потребления консументами. Например, консументы съедают за год не больше того, что производят продуценты. Если же будут съедать больше (из-за стрессовых ситуаций), то популяция продуцентов, в конце концов, исчезнет.
Существенная доля потребляемой консументами биомассы не усваивается ими и возвращается в экосистему в виде экскрементов. То же самое наблюдается при переходе на более высокие трофические уровни. Таким образом, мы имеем дело с третьим основным принципом функционирования экосистем: чем больше биомасса популяции, тем ниже должен быть занимаемый ею трофический уровень.
Таким образом, в экосистеме имеет место непрерывный поток энергии, заключающийся в передаче ее от одного пищевого уровня к другому. В силу второго закона термодинамики этот процесс связан с рассеиванием энергии на каждом последующем звене, т.е. с ее потерями и возрастанием энтропии. Это рассеивание все время компенсируется поступлением энергии от Солнца.
Каждая экосистема обладает определенной продуктивностью. Последнюю оценивают, соотнося массу вещества с единицей времени, т.е. рассматривая ее как скорость образования вещества (биомассы). Основная или первичная продуктивность системы определяется как скорость, с которой лучистая энергия Солнца усваивается продуцентами в процессе фотосинтеза. Например, за год в результате фотосинтеза растительные организмы леса образовали 5 т органического вещества на 1 га; это валовая первичная продуктивность. Все накопленное экосистемой вещество за вычетом вещества, израсходованного на дыхание, составляет фактическую, или чистую первичную продуктивность.
Консументы тоже создают органическое вещество за счет чистой первичной продуктивности. Продуктивность консументов носит название вторичной.
Расчеты показывают, что 1 га леса в среднем ежегодно воспринимает 2,1×109 кДж энергии Солнца. Однако, если все за один год растительное вещество сжечь, то в результате получится всего 1,1×106 кДж, что составляет 0,5%. Это значит, что фактическая первичная продуктивность фотосинтетиков (зеленых растений) не превышает 0,5 %. Вторичная продуктивность еще ниже: при передаче от каждого предыдущего звена трофической цепи к последующему теряется 90-99 % энергии. Если, например, растениями на 1 м2 поверхности почвы создано за 1 сутки количество веществ, эквивалентное 84 кДж, то продукция первичных консументов составит 8,4 кДж, а вторичных - не превысит 0,8 кДж. Имеются расчеты, показывающие, что для образования 1 кг говядины необходимо 70-90 кг свежей травы.
Продуктивность отдельных звеньев экосистемы можно выражать не только в энергетических единицах, но и численно, в показателях массы (единицах биомассы или в численных единицах совокупность живых компонентов экосистемы, присутствующих в ней в определенный момент времени).

Различают продуктивность текущую и общую. Если 1 га соснового леса способен за время своего существования и роста образовать 200 м3 древесной массы, то это - общая продуктивность. Однако. За 1 год такой лес создает всего 1,7-2,5 м3 древесины. Это - текущая продуктивность, или годичный прирост.
Продуктивность экосистем и соотношение в них различных трофических уровней принято выражать в форме пирамид. Первая пирамида была построена Ч. Элтоном и носит название пирамиды чисел:

Пирамиды наглядно иллюстрируют соотношение биомасс и эквивалентных им энергий в каждом звене пищевой цепи и используются в практических расчетах при обосновании (например, необходимых площадей под сельскохозяйственные культуры).
Закон пирамиды энергий (правило десяти процентов). В соответствии с законом пирамиды энергий с одного трофического уровня экологической пирамиды переходит на другой ее уровень в среднем не более 10% энергии.

Эта величина не приводит к неблагоприятным для экосистемы последствиям и поэтому может быть принята для природопользования. Превышение же этой величины недопустимо, так как в этом случае могут произойти полные исчезновения популяций. Закон пирамиды энергий (правило 10%) служит общим ограничением для практических целей в природопользовании для хозяйственной деятельности человека.
Закон пирамиды энергий позволяет делать расчеты необходимой земельной площади для обеспечения населения продовольствием и другие эколого-экономические расчеты.
Чем же определяется реальная продуктивность экосистемы? От каких процессов она зависит? Рассмотрим это. В любой экосистеме происходит образование биомассы и ее разрушение, и эти процессы целиком определяются жизнедеятельностью низшего трофического уровня - растениями-продуцентами. Все остальные организмы только потребляют уже созданное растениями органическое вещество, и, следовательно, общая продуктивность экосистемы от них не зависит.
В растительных же организмах, в зеленых тканях листа осуществляются два параллельных процесса - фотосинтез и дыхание (выделение). При фотосинтезе вещество создается, энергия накапливается, а при дыхании часть накопленных веществ расходуется.
Если в экосистеме процессы накопления вещества преобладают над процессами дыхания, то биомасса и энергия возрастают. Если же в процессе дыхания или потребления последующими звеньями пищевой цепи расходуется больше вещества, чем создается растениями, то запасы биомассы убывают.

Та зона, в пределах которой растения способны увеличивать биомассу, носит название эвфотической (от греч. «эв»- пере, сверх, «фотос» - свет). Экосистемы, в которых P/R>1 (суммарная биомасса возрастает), называются системами с автотрофной сукцессией,где P - продуцируемая биомасса; R - расходы на дыхание.

При P/R<1 суммарная биомасса экосистемы снижается, и такие экосистемы характеризуются гетеротрофной сукцессией. Если P/R = 1, объем биомассы и суммарные запасы энергии в ней остаются постоянными; такие экосистемы называют климаксными.
Как уже говорилось, организмы (биота) - лишь одна составляющая экосистемы; вторая - это окружающая их среда. Химические и физические факторы среды называют абиотическими. К ним относятся свет, температура, вода, ветер, химические биогены, рН среды, соленость и др. Все эти факторы действуют на организмы одновременно, в свою очередь, сильно влияя на экосистему в целом.

Существует 2 подхода в оценке путей эволюции биосферы. 1) утверждает, что эволюции биосферы нет. 2) эволюция биосферы отождествляется с эволюцией одного компонента – органического мира.

Новые данные свидетельствуют о том, что в ходе эволюции органических форм происходили и определенные изменения в биосфере (например, расширялась зона распространения жизни, усложнялся биотический круговорот, изменялись биогеохимические функции). В то же время эти изменения не следовали автоматически за любыми изменениями в органическом мире.

Своеобразие эволюции биосферы заключается в том, что она проходит в пределах уже сложившегося уровня организации живого. К изменениям сложно применить критерии прогрессивного/регрессивного развития.

Эволюция биосферы – это и изменения ее общих параметров(общая биомасса, энергетические функции),и эволюция организмов/экосистем.

Источником развития биосферы выступают отношения между живым и костным веществом в поверхностной оболочке Земли. Разрешение этого противоречия в ходе обменных процессов между организмами и ОС обеспечивает процесс развития биосферы как целостной материальной системы. Органический мир в целом, а не отдельные группы животных/растений детерминируют основные параметры биосферы.

Основные тенденции в эволюции биосферы

Рост биомассы и ее организованности . Наблюдалось устойчивое увеличение биомассы живого вещества. По мере развития биосферы отмечалась тенденция к росту ее организованности. Она проявлялась в частности в увеличении способности биосферы к саморегуляции, увеличении степени независимости от других оболочек. В процессе коренных перестроек биосферы сохранялись прежде всего те группы сообщества, которые были устойчивы к воздействию астрономических/геологических факторов.

Роль живого вещества в становлении и стабилизации поверхностных оболочек Земли . Решающая роль живого вещества в эволюции биосферы и земных оболочек особенно ярко проявилась в: 1) формировании газового состава атмосферы 2) превращении восстановительной обстановки в окислительную 3) преобразовании химической и минеральной структуры биосферы 4) детерминации химической активности природных вод. 5) изменении общего термодинамического баланса биосферы.



«живое вещество охватывает и перестраивает все химические процессы биосферы, действительная энергия его, по сравнению с энергией костного вещества, огромна. Живое вещество есть самая мощная геологическая сила, растущая с ходом времени».

Накопление энергии в биосфере. «с космической точки зрения жизнь есть постоянное задержание и накопление химической и лучистой энергии, замедляющей превращение полезной энергии в теплоту и препятствующей рассеиванию последней в мировом пространстве».

Находящаяся в биосфере энергия является результатом ее эволюции. Основными способами увеличения энергии являются 1) фотосинтез и выделение кислорода. 2) захват растениями новых областей Земли, превращение их в области аккумуляции солнечной энергии. 3) аккумуляция солнечной энергии в горючих ископаемых и биогенных минералах

Возникновение новой формы миграции химических элементов. По мере эволюции групп животных со сложным поведением развивалась биогенная миграция атомов. Новая форма биогенной миграции не связана с прохождением химических элементов через тело организма.

Биосферная адаптация. Важнейшими являются: 1) возникновение озонового экрана. 2) способность растений улавливать солнечную энергию, преобразовывать в химическую. 3) разнородность трофических уровней, многообразие видов, участвующих в пищевых цепях. 4) сезонная ритмика способствует выработке адаптаций широкого значения, позволяющей организмам выживать в условиях колебания факторов среды. 5) на популяционном и организменном уровне организации живого воздействие факторов проявляется в изменении динамики численности и воспроизводства популяции. 6) существуют закрепленные генетически механизмы обеспечения жизнеспособности организма, функционирования физиологических и биохимических процессов в пределах определенного диапазона геохимических условий. 7) внутри популяции существует гетерогенность по чувствительности организма к определенным условиям, особенно ярко при воздействии на организм веществ в экстремальных дозах, когда в организме возникают различные заболевания и отклонения. 8) чем значительнее колебание геохимических факторов, тем выше темпы эволюционных преобразований. 9) элементы не действуют изолированно, большое значение имеет соотношение между ними. При изменении концентрации какого-либо элемента в организме происходит не только усиление/ослабление отдельных процессов, но и дисфункция всех процессов обмена веществ. Необходимо учитывать, что отдельные организмы не только приспособлены к внешней среде, но и приспосабливают среду к своим биологическим потребностям.